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Dynamic voltage scaling (DVS) is an effective low-power design technique for embedded real-time
systems, adjusting the clock speed and supply voltage dynamically. In this paper, we evaluate
state-of-art DVS algorithms recently proposed for hard real-time periodic task sets. We compare
the energy efficiency of the proposed DVS algorithms under various task/system configurations.
Experimental results both from the simulation tool and a real H/W-based DVS platform are pre-
sented. Our results provide important insights in understanding the performance differences among
the proposed DVS algorithms in a unified fashion.
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1. INTRODUCTION

Dynamic voltage scaling (DVS), which adjusts the supply
voltage and clock frequency dynamically, is an effective
low-power design technique for embedded real-time sys-
tems. Since the energy consumption E of CMOS circuits
has a quadratic dependency on the supply voltage, lower-
ing the supply voltage is one of the most effective ways
of reducing the energy consumption.

With the recent growth in the portable and mobile
embedded device market, where a low-power consumption
is an important design requirement, several commercial
variable-voltage microprocessors were developed. Target-
ing these microprocessors, many DVS algorithms have
been proposed or developed, especially for hard real-time
systems.1–8�10–12�17�19 Since lowering the supply voltage
also decreases the maximum achievable clock speed,14

various DVS algorithms for hard real-time systems have
the goal of reducing supply voltage dynamically to
the lowest possible level while satisfying the tasks’ timing
constraints.

Although each DVS algorithm is shown to be quite
effective in reducing the energy/power consumption of a
target system under its own experimental scenarios, these
recent DVS algorithms have not been quantitatively evalu-
ated under a unified framework, making it a difficult task
for low-power embedded system developers to select an
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appropriate DVS algorithm for a given application/system.
A quantitative analysis of the energy-efficiency is particu-
larly important because most of these DVS algorithms are
based on both static and dynamic slack analysis techniques
whose performance is difficult to predict analytically. In
addition, their energy efficiency fluctuates significantly
depending on the workload variations, task set character-
izations, and execution paths taken; further requiring a
quantitative comparison study.

In this paper, we quantitatively evaluate the energy effi-
ciency of several recent DVS algorithms proposed for hard
real-time systems using a unified DVS simulation envi-
ronment called SimDVS.16 In order to better observe the
impact of DVS algorithms on system behavior, we also
perform similar experiments using DVS Evaluation Work-
bench (DEW), which is an XScale-based DVS evaluation
environment. We focus on preemptive hard real-time sys-
tems in which periodic real-time tasks are scheduled, under
the Earliest-Deadline-First (EDF) algorithm or the Rate-
Monotonic (RM) algorithm (which represent the most
widely used real-time system models).

2. CLASSIFICATION OF DVS ALGORITHMS

For hard real-time systems, there are two types of volt-
age scheduling approaches depending on the voltage scal-
ing granularity: intra-task DVS (IntraDVS) and inter-task
DVS (InterDVS). The intra-task DVS algorithms3�15 adjust
the voltage within an individual task boundary, while the
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Table I. Classification of DVS slack estimation techniques.

Slack estimation technique Scaling decision

IntraDVS (1) Path-based method Off-line
(2) Stochastic method

InterDVS (3) Maximum constant speed
(4) Stretching to NTA On-line

(Next Task Arrival)
(5) Priority-based slack-stealing
(6) Utilization updating
(7) Short-term work-demand analysis

inter-task DVS algorithms determine the voltage on a task-
by-task basis at each scheduling point. The main difference
between the two approaches is whether the slack times are
used for the current task or for the tasks that follow. Inter-
DVS algorithms distribute the slack times from the current
task for the following tasks, while IntraDVS algorithms
use the slack times from the current task for the current
task itself.

In this paper, we focus on inter-task DVS algorithms for
periodic hard real-time systems, and Table I summarizes
representative slack estimation techniques used in these
algorithms. When we assume periodic tasks, the slack time
of tasks can be estimated in several different ways. Since
the periods and WCETs of tasks are given, we can stati-
cally analyze the slack times in offline phase. During run
time, additional slack times, which are generated from the
difference between the WCETs and actual execution times
of tasks, can be dynamically estimated. For example, based
on the periodicity and WCET of tasks, we can estimate
statically given slack times and exploit those slack times
to lower the clock speed, i.e., the worst case processor
utilization can be estimated and the clock speed can be
adjusted based on that as in the maximum constant speed
heuristic.17 Since the arrival time of tasks are known a
priori, when a single task is active, its execution can be
extended to the earliest arrival time of the next task with
the lowered clock speed and voltage as in the stretching to
NTA (Next Task Arrival) technique.17 Furthermore, since
the WCETs of tasks are also known, we can estimate how
much work should be done before the deadline of the
scheduled task using the short-term work-demand analysis
heuristic.8

While the above techniques exploit static information
only (such as WCET and task period), other techniques
utilize dynamic information such as workload variation of
tasks. Generally, the schedulability of the given task set is
tested based on tasks’ WCETs in hard real-time systems
(in order to guarantee the feasible schedule of tasks). How-
ever, the execution time of each task is usually less than its
WCET, and the actual processor utilization during run time
is usually lower than the worst case processor utilization.
Thus, when a task completes its execution much earlier
than its WCET, the expected processor utilization can be
recalculated based on the actual execution time of com-
pleted task, and the clock speed can be adjusted based on

Table II. Target DVS algorithms.

Used Methods
(Numbers indicate
corresponding
techniques in Table I)

Scheduling �n�∗ indicates an
Category Policy DVS Policy improved version of n

InterDVS EDF lppsEDF [17] �3�+ �4�
ccEDF [12] (6)
laEDF [12] (6)∗

DRA [1] �3�+ �4�+ �5�
AGR [1] (4)∗ + �5�
lpSHE [7] �3�+ �4�+ �5�∗

RM lppsRM [17] �3�+ �4�
ccRM [12] �3�+ �4�∗

lpWDA [8] �4�+ �7�

that as in utilization updating. Also, when a higher-priority
task completes its execution earlier than its WCET, the
following lower-priority tasks can use the slack time from
the completed higher-priority task, and the clock speed can
be lowered based on the slack time as in priority-based
slack stealing. (A more detailed description is given in Ref.
[10].)

Table II summarizes the DVS algorithms selected for
the comparative study. Nine InterDVS algorithms are cho-
sen, three8�12 17 of which are based on the RM scheduling
policy, while the other six algorithms1�7�12�17 are based on
the EDF scheduling policy. The “used methods” column of
Table II shows the DVS techniques employed by each tar-
get DVS algorithm. For example, in lppsEDF and lppsRM
which were proposed by Shin et al. in Ref. [17], a slack
time of a task is estimated using the maximum constant
speed and stretching-to-NTA methods.

The ccRM algorithm proposed by Pillai et al.12 is sim-
ilar to lppsRM in the sense that it uses both the maxi-
mum constant speed and the stretching-to-NTA methods.
However, while lppsRM can adjust the voltage and clock
speed only when a single task is active, ccRM extends the
stretching to NTA method to the case where multiple tasks
are active.

Pillai et al. also proposed two other DVS algorithms,12

ccEDF and laEDF, for the EDF scheduling policy. These
algorithms estimate a slack time of a task using the uti-
lization updating method. While ccEDF adjusts the volt-
age and clock speed based on run-time variations in the
processor utilization alone, laEDF takes a more aggressive
approach by estimating the amount of work required to be
completed before NTA.

DRA and AGR, which were proposed by Aydin et al.
in Ref. [1], are two representative DVS algorithms that
are based on the priority-based slack stealing method. The
DRA algorithm estimates the slack time of a task using the
priority-based slack stealing method along with the max-
imum constant speed and the stretching-to-NTA methods.
Aydin et al. also extended the DRA algorithm and pro-
posed another DVS algorithm called AGR for more
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aggressive slack estimation and voltage/clock scaling. In
AGR, in addition to the priority-based slack stealing, more
slack times are identified by computing the amount of
work required to be completed before NTA.

lpSHE is another DVS algorithm based on the priority-
based slack stealing method.7 Unlike DRA and AGR,
lpSHE extends the priority-based slack stealing method by
adding a procedure that estimates the slack time from
lower-priority tasks that were completed earlier than
expected. DRA, AGR, and lpSHE algorithms are some-
what similar to one another in the sense that all of them
use the maximum constant speed in the off-line phase and
the stretching-to-NTA method in the on-line phase in addi-
tion to the priority-based slack stealing method.

lpWDA is (so far) the only DVS algorithm for the RM
scheduling policy that is based on a more aggressive slack
estimation technique.8 In theory, a slack estimation method
(such as priority-based slack stealing) can be decoupled
from a scheduling policy, allowing a smooth extension of
the slack estimation method developed for one schedul-
ing policy to another. However, due to the fixed priority
in RM scheduling, such an extension can be inefficient as
shown in Ref. [8]. For example, the priority-based slack
stealing, the majority of slack times come from the unused
times of completed higher-priority tasks. However, since
each task instance always has the same fixed priority in
RM scheduling, this technique does not work as effec-
tively as in EDF scheduling. That is, higher-priority tasks
tend to have less slack times than lower-priority tasks in
RM scheduling. It is likely that the higher the task prior-
ity is, the faster the task execution speed is, making the
unbalance in execution speeds more severe and resulting
in poor energy efficiency. lpWDA solves this problem by
adopting the short-term work-demand analysis method. In
this algorithm, for a high-priority task, small slack times
are inherited from higher-priority tasks but few tasks pre-
empt the allocated time interval for the task. On the other
hand, for a low-priority task, large slack times are passed
over to the low-priority task from higher-priority tasks.
However, the allocated interval is frequently preempted
by higher-priority tasks. Therefore, slack times are more
evenly distributed.

3. EVALUATION ENVIRONMENTS

As shown in the previous section, many DVS algorithms
have been proposed for hard real-time systems. In this
section, we present evaluation results for several key
DVS algorithms using SimDVS, a unified simulation envi-
ronment for DVS algorithms. We also present analysis
results obtained from actual measurements using DEW, an
XScale-based DVS evaluation environment. Using actual
implementation of DVS algorithms on an XScale devel-
opment board, we can verify the validity of the simula-
tion study and better understand the side effects as well as
overheads of DVS, if any.

In evaluating the performance of DVS algorithms, the
ultimate metric is the system-wide energy consumption.
Since it is difficult to understand the power reduction effect
in the system-level, we focus on two alternative metrics in
this study: CPU power consumption and other side effects
of using DVS. For the latter, we focus on the increase in
system overhead due to voltage scaling and the memory
overhead.

SimDVS is a software simulator designed for perfor-
mance evaluation of hard real-time DVS algorithms. It is
useful in estimating the energy efficiency of several DVS
algorithms under different machine specifications for vari-
ous task sets. On the other hand, DEW is an XScale-based
DVS evaluation environment. Both SimDVS and DEW,
which target a single-processor platform, implement all the
DVS algorithms listed in Table II.

Two evaluation tools have different pros and cons.
Although SimDVS can produce various simulation results
of several DVS algorithms under the different machine
specifications and task sets fast, it is difficult to capture
the overhead and side-effects of DVS—such as context
switching overhead, DVS operation delay, memory access
behavior, and other delays due to the kernel service. (For
a detailed description of SimDVS, see Ref. [10].)

In contrast, DEW is slower than SimDVS (because
DEW runs actual applications while SimDVS performs
event-driven simulation) and less flexible for experimental
studies (because DEW represents a single machine specifi-
cation). However, it allows to monitor real system behavior
under DVS. DEW is based on an XScale evaluation board,
the Intel Board DBPXA250. The Intel Board DBPXA250
includes the Intel PXA250 microprocessor which sup-
ports dynamic voltage scaling. It supports 13 levels of
clock speed (from 99.5 MHz to 398.1 MHz) and four
levels of voltage (from 0.85 V to 1.3 V). In DEW,
tasks run on top of a POSIX-compliant embedded real-
time operating system, VELOS (described in detail in
www.hkmds.com). In order to estimate energy consump-
tion and system overhead, we inserted small instrument
action codes to thekernel , such as at the context switch-
ing points and kernel service routines. At each checkpoint
(e.g., the start of context switching and the start of the ker-
nel schedule), the kernel collects system overhead infor-
mation and send them to the host PC through a debugging
tool. Then, the host PC computes the energy consumption
based on the collected trace.

4. EXPERIMENTAL RESULTS

4.1. Simulation Results

The energy efficiency of InterDVS algorithms depends
significantly on the accuracy of slack estimation and the
appropriateness of slack distribution. To evaluate the effec-
tiveness of the slack estimation method used in each Inter-
DVS algorithm, extensive experiments while varying the
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number of tasks are performed. Then, to evaluate the effect
of slack distribution methods, experiments were performed
while restricting the amount of slack time that a task can
utilize.

4.1.1. Number of Tasks

To evaluate the impact of the number of tasks on the
energy efficiency of DVS algorithms, experiments with
varying numbers of tasks were performed. For each task
set with n tasks (where n= 2�4�6� � � � � 16), 100 task sets
were randomly generated. The period and the WCET of
each task were randomly generated using uniform distri-
bution with the ranges of [10, 100] ms and [1, period]
ms, respectively. To eliminate the effect of static slack
times, we chose the task sets which have high worst case
processor utilization (WCPU); WCPUs are equal to 1.0
for EDF InterDVS algorithms and 0.9 for RM InterDVS
algorithms.a The execution time of each task instance was
randomly drawn from a Gaussian distribution, and the
resulting average case processor utilization (ACPU) was
set to 0.55.

Figure 1 shows the impact of the number of tasks on
the energy consumption.b In the figure, the y-axis indicates
the normalized energy consumption value over the energy
consumption of an application running on a DVS-unaware
system with a power-down mode only.c As the number of
tasks increases, the energy efficiency of lppsEDF, lppsRM,
and ccRM that only use the stretching-to-NTA technique
do not improve significantly, while that of the other more
aggressive InterDVS algorithms improves significantly.
This can be explained by the fact that, in the stretching-to-
NTA method, the slack time that can be exploited is lim-
ited to the time between the completion of a task instance
and the arrival time of the next task instance, which is
largely independent of the number of tasks in the sys-
tem. On the other hand, for the other InterDVS algorithms,
since the slack times can be taken from any completed task
instance, as the number of task increases, each task has
more slack sources and can be scheduled with a lowered
clock speed.

As shown in Figure 1, the energy efficiency of each
algorithm tends to approach a limit as the number of task
increases. Actually, when the task set has more than 8
tasks, the results are very similar to that of a 8-task set. We
also performed experiments varying the ACPU from 0.1
to 0.9. In these experiments, overall trends are very sim-
ilar to when ACPU is 0.55.10 (In the rest of experiments,

aDue to the nature of Rate-Monotonic Scheduling, it is not easy to get
task sets which fully utilize the system. Thus, we set the high WCPU for
RM InterDVS algorithms as 0.9 instead of 1.0.

bUnless stated otherwise in this paper, the energy consumption includes
only the energy consumed in a processor core.

cIn this case, all the tasks are scheduled with maximum clock speed,
and the processor enters into the power-down mode when it is idle. The
power consumption in the power down mode is assumed to be zero.

Fig. 1. Impact of the number of tasks.

we report the results only for 8-task sets with ACPU set
to 0.55.)

4.1.2. Speed Bound

In the previous experiments, we assumed the greedy
method in the slack distribution. That is, all the slack time
identified is given to the current task instance. While the
greedy policy is simple, it is not the best one. For exam-
ple, in aggressive InterDVS algorithms such as laEDF,
AGR, and lpSHE, dynamically generated slack times may
be distributed unevenly among task instances. When the
current task instance exhausts its assigned slack time by
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Fig. 2. Impact of speed bound.

the greedy distribution policy, task instances that follow
may not benefit from slack times at all. In order to under-
stand the effect of different slack distribution policies, we
experimented by varying the amount of usable slack times.
In the experiments, we specified the lower bound on the
clock speed regardless of available slack times.1�10 That
is, even if a DVS algorithm finds a large amount of slack
time, the clock speed is limited to the pre-set lower bound.

Figure 2(a) shows the experimental results for various
minimum speeds. In each experiment, it is assumed that the
clock speed can be varied within the range of [� ·fmax� fmax]
with a step size of 1 MHz where fmax = 100 MHz and �

is the speed bound factor (cf., Even though we change
fmax, the following experimental results still hold). As �
becomes larger, the task instances is scheduled with low-
ered clock speed less aggressively because the clock scal-
ing is restricted by � · fmax. When � · fmax is close to the
lowest possible clock speed of the target machine, it is
similar to when the greedy slack distribution is used. The
experiments were performed varying � from 0.1 to 0.9. In
Figure 2(a), the x-axis indicates the speed bound factor.
The energy efficiency of InterDVS algorithms (except for
lppsEDF and ccEDF) is generally higher when � values
are between 0.3 and 0.5. For example, when the speed
bound factor is 0.5 in Figure 2(a), an improvement of
6 ∼ 11% was achieved over when the greedy policy is
used.

In Figure 2(a), it is shown that the energy efficiency
of AGR and lpSHE is very close to the theoretical lower
boundd when the speed bound factor is near 0.5. In fact,
one interesting observation is that for the aggressive Inter-
DVS algorithms, the energy efficiency is highest when the
speed bound factor was set to ACPU.

To show the relationship between the speed bound and
ACPU, extensive experiments were performed for vari-
ous task sets while varying ACPU and scaling bound.
Figure 2(b) shows the results. (Due to the lack of space,
only the results for laEDF (an example of aggressive Inter-
DVSs) are shown. The results for AGR and lpSHE are
very similar to that of laEDF. Other relevant results also
can be found in Ref. [10].) The results confirm that when
the selected speed bound factor is close to ACPU (=0�55∗
WCPU), the best energy efficiency is achieved for laEDF.
Wireless Environments in Video Streaming.

4.2. Real Platform Evaluation Results

Although SimDVS is a useful tool to experiment with var-
ious scenarios under different machine configurations/task
specifications (as shown in Ref. [10]), it may not accu-
rately describe the actual system behavior of a real DVS
platform. In order to validate the usefulness of SimDVS
and better understand the impact of various system over-
heads on the energy efficiency of DVS algorithms on
the real DVS platform, we performed various experiments
using DEW.

Figures 3(a) and 3(b) show the normalized energy con-
sumption for the same task sets using SimDVS and DEW,
respectively. In these experiments, the same machine spec-
ification and the same energy consumption model were
used. Each task set consists of 2 ∼ 8 tasks, and its WCET
and ACET are set to be 1.0 and 0.5, respectively. 20 task

dFor EDF scheduling, the theoretical lower bound is computed with the
complete execution trace information using Yao’s algorithm.18 For RM
scheduling, theoretical lower bound also can be computed using Quan’s
algorithm.13 In both cases, the speed lower bound was not applied.
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Fig. 3. Evaluation results using SimDVS and DEW.

sets were tested for each task set size.e The period of each
task were randomly generated using uniform distribution
with the range of [1000� 4000] ms. In the experiments
using DEW, each periodic task performs simple matrix
operations repeatedly. We controlled the execution time of
each task instance by adjusting the loop count of matrix.
The loop body consists of a 16-KB single basic block.

eSince the number of task sets and the task parameters are changed, the
experimental results in Figure 3 can differ from the results in Figure 1.

(Since the PXA250 has a 32-way set-associative cache of
32-KB, the 16-KB program does not incur any conflict
misses for a single task. However, as the number of tasks
increases, the number of conflict misses increases.)

As shown in Figures 3(a) and 3(b), the overall trend on
relative energy efficiency among various DVS algorithms
is similar in both SimDVS and DEW, partially demonstrat-
ing the validity of SimDVS as a research tool. Especially,
laEDF and lpSHE show better energy efficiency than that
of others in most cases. However, absolute values on the
energy consumption are not exactly same; Measurements
in DEW were generally higher.

As the main sources of this difference, we consider three
factors that may affect the task execution and slack esti-
mation in DVS algorithms: (1) the impact of the system
overhead, (2) the effect of system timing resolution, and
(3) the influence of the cache and memory system. Using
DEW, we analyze how these factors influence the energy
efficiency of each DVS algorithm.

4.2.1. Impact of System Overhead

In a real DVS-enabled system, (at least) two kinds of basic
overheads exist: a context switching overhead and a tick
scheduler overhead. At each context switching, the DVS-
enabled kernel (1) selects the next task, (2) computes the
slack, (3) changes the clock/voltage, and (4) saves and
restores the contexts of the previous task and the selected
task, respectively. At each tick scheduling, the DVS-
enabled kernel (1) increases the global system clock count,
and (2) performs timer-related kernel services. When both
overheads are taken into account, the task execution traces
from DEW will be different from that of SimDVS.

In order to see whether the system overhead can affect
the energy efficiency of a DVS algorithm, we performed
additional experiments by varying the execution frequen-
cies of tasks. We increase the task execution frequen-
cies by shortening the periods and WCETs of the same
tasks used in Figure 3. Figures 4(a), 4(b), and 4(c) show
the changes of system overhead when the task execution
frequencies increase by 2 times, 4 times, and 40 times,
respectively.f In these figures, each bar represents the ratio
of the execution time by the system overhead to the total
execution time. In the bar, the top part DVSH/W represents
the ratio of time delay caused by the clock/voltage scaling
hardware, the middle part (DVSS/W) indicates the ratio of
extra execution times caused by the slack computation in
a DVS algorithm, and the bottom part (SYSrest) represents
the ratio of the rest of the system overhead such as context
switching and timer service. (PM in Figure 4 indicates a
power-down only system.)

As illustrated in Figure 4, when a DVS algorithm is
used, the system overhead increases as the number of tasks

f For each cases, WCETs of tasks are also scaled accordingly.
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Fig. 4. System overhead variations in DVS algorithms.

increases. For the task sets with the same number of tasks,
the system overhead increases very quickly as the task
execution frequency increases. In particular, as shown in
Figure 4(b) and 4(c), DVSH/W and DVSS/W parts increase
quickly. (Note that, the scale of y-axis in Figure 4(c) is 10
times greater than that of the others.)

It is interesting to observe that the DVSH/W parts are
relatively larger in ccEDF and laEDF than in other algo-
rithms. This is because ccEDF and laEDF perform the
voltage scaling step more frequently. In ccEDF and laEDF,
voltage scaling steps are executed additionally when each
task is activated.

Figures 5(a), 5(b), and 5(c) show the changes in the
energy efficiency of DVS algorithms when the execution
frequency is increased. In DRA, AGR, and lpSHE, the
increased system overhead (due to the increased execution
frequency) significantly affect the energy efficiency. How-
ever, in lppsEDF, ccEDF, and laEDF, the energy efficiency
is less sensitive to the increased execution frequency.

4.2.2. Impact of Timing Resolution

One of the major differences between SimDVS and DEW
is the timing resolution. While DEW is based on a discrete
time model, SimDVS assumes a continuous time model.

J. Low Power Electronics 1, 1–11, 2005 7
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Fig. 5. Energy efficiency variations of DVS algorithms.

In the kernel of DEW, the global clock count increases at
every 10 ms, as with all other timing services. Therefore,
the execution times and periods of tasks are specified in the
unit of 10 ms. Although a discrete timing resolution does
not affect the overall schedule of tasks significantly, it can
change the accuracy of slack computation in a DVS algo-
rithm, thus influencing the algorithm’s energy efficiency.

In DRA, AGR, and lpSHE, slack times are computed
based on the remaining WCETs of activated task instances
and unused times of completed task instances. Since the
remaining WCETs and unused times of task instances are

expressed in the number of timing tick intervals, there can
be a discrepancy between the estimated slack value and
the theoretically available slack time. For example, even if
a task executed 15 ms, its remaining WCET is decreased
by only 10 ms (instead of 15 ms) because of the 10 ms
tick interval.

On the contrary, in ccEDF and laEDF, slack times are
estimated based on the system’s local utilization, which
is computed based on a real number (i.e., not an integer
value). Thus, even though the timing tick is 10 ms, a slack
can be computed accurately.

8 J. Low Power Electronics 1, 1–11, 2005
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Figures 5(a) and 5(c) also illustrate the impact of timing
resolution on the energy efficiency. When the ratio of the
timing tick interval to the tasks’ WCETs is relatively small
as in Figure 5(c),g DRA, AGR, and lpSHE perform worse
than ccEDF and laEDF. This is an opposite to result to
the SimDVS result. As shown in Figure 1(a), ccEDF and
laEDF usually perform worse than DRA, AGR, and lpSHE
in SimDVS.

4.2.3. Impact of Memory Behavior

Since a DVS algorithm generally lowers the task execu-
tion speed, the execution time of the task will be increased
under a DVS-enabled RTOS. Although the lowered execu-
tion speed is desirable for reducing the energy consump-
tion, it can introduce negative side effects as well. One
such a side effect is an increase in the number of task pre-
emptions, which, in turn, increases the number of memory
accesses.

In order to see the impact of a DVS algorithm on
the context switching frequency and memory energy con-
sumption, we measured the preemption count and memory
access count for the same task sets used in Figure 3(b).
Figures 6(a) and 6(b) show the results. In both figures, the
preemption count and memory access count are normal-
ized to that of a power-down only system. As shown in
Figure 6(a), the preemption count increases with increas-
ing number of tasks. Especially, in aggressive algorithms
such as laEDF, DRA, AGR, and lpSHE, the number of pre-
emptions increases more rapidly than the others. For exam-
ple, in lpSHE, the preemption count increases roughly to
5 times of that of PM.

We also measured the memory access count using the
hardware performance monitoring counters available on
the PXA250. As shown in Figure 6(b), all the DVS algo-
rithms require more memory accesses than PM. In ccEDF
and laEDF, the increases in memory accesses can be
attributed to two sources: (1) the increase in the number
of preemptions and (2) the increase in memory accesses
from the algorithm itself. The 2-task set of Figure 6(a) and
Figure 6(b) show that the latter source is also significant.
Since ccEDF and laEDF perform the voltage scaling step
more frequently, they require more memory accesses. In
DRA, AGR, and lpSHE, memory access counts increase as
their preemption counts increase. In worst case, memory
access counts increase up to 55%.

The increase in memory accesses will result in the
increase in the energy consumed in memory system. For
example, if DRAMs were used as the memory system
(where the energy consumption is proportional to the num-
ber of accesses), the memory energy consumption may
increase up to 55% due to DVS (in the worst case).

gIn the 8-task set of Figure 5(c), the range of tasks’ WCET is
[20� 90] ms where the tick interval used is 10 ms.

Fig. 6. Changes in memory system behavior.

Our measurements show that the memory system behavior
should be carefully considered if a DVS algorithm can be
an effective low-power technique. For example, depending
on the characteristics of the memory system, it might be
better to use the simple DVS algorithm such as lppsEDF
or ccEDF than more aggressive ones for overall system
energy savings.

The aggressive DVS algorithms may increase the energy
consumption not only in memory subsystem but also in
other peripherals. For example, the lengthened task life-
time due to lowered clock speed may increase the leakage
energy consumption in peripheral devices (related to the
task). For these preemption and memory related issues,9
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gives simple heuristics that can reduce such side effects of
DVS.

5. CONCLUSION

We have compared the energy efficiency of recent DVS
algorithms for hard real-time periodic tasks, and analyzed
the impact of these algorithms on system behavior. Our
comparative study (using software simulation) shows the
existing DVS algorithms such as laEDF, AGR, and lpSHE
are theoretically close to optimal. However, as shown in
the experiments using real platform, when these algorithms
incur too much system overhead, their energy efficiency
can be degraded, further increasing the energy consump-
tion of other components in the system.

Our study is the first detailed performance evalua-
tion work of DVS algorithms for hard real-time systems,
covering both the simulation-based analysis and the real
platform-based analysis. Our experiments does not cover
all the possible cases for various task execution time distri-
butions and hardware platforms (e.g., multi-processor plat-
form). However, we believe that, based on the findings of
our evaluation, the existing DVS algorithms can be further
improved. For example, since DVS algorithms are shown
to interact with memory systems (often in a negative fash-
ion), it will be an interesting future work to make the DVS
algorithms more dynamically adaptive to the behavior of
the memory system.
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