
Copyright © 2006 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 2, 1–12, 2006

Communication Power Optimization for
Network-on-Chip Architectures

Dongkun Shin1 and Jihong Kim2�∗
1Samsung Electronics Co., Korea

2School of Computer Science and Engineering, Seoul National University, Korea

(Received: 15 February 2006; Accepted: 1 June 2006)

Network-on-Chip (NoC) architecture is emerging as a practical interconnection architecture for future
systems-on-chip products. In this paper, an energy-efficient static algorithm which optimizes the
energy consumption of task communications in NoCs with voltage scalable links is proposed. In
order to find optimal link speeds, the proposed algorithm (based on a genetic formulation) globally
explores the design space of NoC-based systems, including network topology, task assignment, tile
mapping, routing path allocation, task scheduling, and link speed assignment. The experimental
results demonstrate that the proposed design technique can reduce energy consumption by an
average of 28% over existing techniques.
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1. INTRODUCTION

Network-on-Chip (NoC) architecture has recently been
proposed as a practical interconnection architecture for
systems-on-chip (SoC) products.1�2 NoCs are especially
useful in overcoming complex on-chip communication
problems, by providing a more structured and modular net-
work interface. Network electrical parameters can be well
controlled and optimized, since networks are structured
and wired beforehand, making it possible to use aggres-
sive signaling circuits, therefore significantly reducing
power dissipation and propagation delay. A standard
interface between modules facilitates reusability and
interoperability.

As presented in Figure 1(a), an NoC-based system is
typically divided into regular tiles, where each tile might
be a programmable microprocessor, an ASIC, or a FPGA.
Instead of being connected by dedicated wires, each of
these tiles is connected to an interconnection network that
routes packets between tiles. As presented in Figure 1(b),
the router in NoCs consists of input and output links,
buffers and a crossbar switch.

In NoC-based systems, on-chip networks consume a
substantial portion of system power budget. For exam-
ple, the on-chip network of the MIT Raw microprocessor,
which has 16 tiles, consumes 36% of the total chip power.3

∗Author to whom correspondence should be addressed.
Email: jihong@davinci.snu.ac.kr

In the Alpha 21364 processor, 20% of the total chip power
is consumed by the router and links.4

A promising low-power technique for energy-efficient
NoCs is to scale the speeds of the communication links
with the corresponding voltage level.5 As with CPU
dynamic voltage scaling, the link communication energy
has a quadratic dependency on link speed. By adjusting the
link speed based on identified idle communication inter-
vals, a significant amount of communication energy can
be saved without significant degradation in communication
performance.

Two kinds of speed scaling techniques exist. The first
is an on-line scheme, which adjusts the communication
speed dynamically, based on variations in the run-time
communication traffic. The other is an off-line scheme,
which assigns an appropriate fixed communication speed
to each link statically, based on the communication pat-
terns of target applications. The off-line scheme is better
suited to real-time applications, since system designers are
able to predict communication delays at design time. In
addition, the off-line scheme does not result in run-time
overhead, which is indispensable to the on-line scheme.
There are two kinds of run time overheads in the on-line
scheme. The first is the communication traffic monitoring
overhead required to determine an appropriate link speed.
The second is the link voltage scaling overhead required
for adjusting the operating voltage. For example, based
on the multi-level DVS link model which supports ten
discrete frequency levels and corresponding voltage levels
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Fig. 1. Architectural overview of NoC-based system.

in Ref. [5], the latency of voltage (frequency) transition
between adjacent levels is set to 10 �s (100 link clock
cycles).

In this paper, an off-line link speed assignment algo-
rithm for energy-efficient NoCs with scalable voltage links
is proposed. Given the task graph of a periodic real-time
application, the proposed algorithm assigns an appropri-
ate communication speed to each link, minimizing the
energy consumption of NoC-based systems while guaran-
teeing the timing constraints of the real-time application.
In addition, the proposed algorithm turns off links stat-
ically, when no communications are scheduled, so that
the leakage power of an interconnection network can be
saved. (The leakage power consumption can be a signifi-
cant power consumer. For example, 21% of the total power
consumption in 0.07 �m technology is caused by leakage
current.6)

As with other multiprocessor-based systems, the design
flow of NoC-based systems involves several (interacting)
steps, of which link speed assignment is the final step. In a
typical multiprocessor system, the design flow includes
two key steps, task assignment and task scheduling. Given
a task graph with design constraints (e.g., the execution
time and the power consumption) and processing elements
(PEs), each task is first assigned to an appropriate PE (task
assignment). Then, each task is scheduled for execution
within the PE (task scheduling). However, in NoC-based
systems, two additional steps are necessary, tile mapping
and routing path allocation. The tile mapping step maps a
PE to one of the tiles in an NoC-based system. The rout-
ing path allocation step determines communication paths
between tiles. For example, if an NoC-based system has
sixteen PEs, as presented in Figure 1(a), it is required to
decide which tile each PE will be located. If data has to
be transferred from tile t1 to tile t16, then the switches
among s1� � � � � s16 that forward the data, must be deter-
mined. (In this paper, the term network assignment is used
to refer to both the tile mapping and routing path alloca-
tion steps.)

In an NoC-based system, design decisions made in the
network assignment step, as well as the task assignment
and the task scheduling steps, can significantly affect the
communication speed of each link, because communica-
tion traffic patterns vary according to the result of the
design steps. Therefore, in order to make an NoC-based
system energy-efficient, each step should be taken with
the awareness of its implication for energy consumption in
links.

For example, consider the task graph G presented in
Figure 2(a) with a period set to 400 time units. In this
example, the tasks �1, �2, �3, and �4 are assumed to be
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assigned to the PEs p1, p2, p3, and p4, respectively. It
is assumed that a target SoC has four tiles with voltage-
scalable links. Each link can be switched to one of two
data transfer rates, 1 Gb/s or 2 Gb/s. A tile mapping algo-
rithm may generate the network assignment presented in
Figure 2(b), where each number on a link indicates the
corresponding communication cost, i.e., the total amount
of data transfers for the link.

Assuming that the routing paths are allocated by the XY-
routing algorithm,7 packets are first routed along the
X-axis. When a packet reaches the column under which the
destination tile is located, it is then routed along the Y-axis.
Therefore, the communication cost of the network assign-
ment NA1 is 90. However, if tile mapping is changed to the
network assignment NA2 (as presented in Fig. 2(c)), the
communication cost is reduced to 70. Therefore, it can be
said that the network assignment NA2 has greater energy-
efficiency than NA1 because NA2 requires less energy to
satisfy the application’s communication requirements.

Now let us consider how to assign the communication
speed of each link in the network assignment NA2. If the
task �3 has a hard deadline, then the link from tile1 to
tile2 should have a high speed (2 Gb/s) connection, this is
because the link is on the critical path; therefore, it must
transfer the data between �2 and �4 as well as between
�2 and �3. This suggests that the network assignment NA2

could be improved so that the critical path does not share
links with non-critical paths. Therefore, routing path allo-
cation should be performed with awareness of its effect on
link speed scaling.

If the routing path of the edge (�2, �3) in NA2 is
changed from tile1 → tile2 → tile4 to tile1 → tile3 → tile4,
the network assignment NA3 is obtained, as presented in
Figure 2(d). Although the network schedule NA3 has the
same amount of communication traffic as the network
assignment NA2, a lower speed (1 Gb/s) can now be
assigned to the link from tile1 to tile2. If it is assumed
that the communication link dissipates 10 mW at 1 Gb/s,
but 40 mW at 2 Gb/s, by assigning the lower speed to the
link from tile1 to tile2 (even though the link from tile3 to
tile4 is now activated), the overall communication energy
is reduced by 36% over NA2.

	Energy 	NA2
 = 40 mW× 40
2 Gb/s

+10 mW× 30
1 Gb/s

= 1100 mW

Energy 	NA3
 = 10 mW× 70
1 Gb/s

= 700 mW


In this paper, it is demonstrated that the existing design
algorithm for NoC-based systems is inappropriate for sys-
tems with voltage scalable links, and a novel optimization
algorithm (based on a genetic formulation) is proposed,
which explores the overall design space efficiently. The
experimental results demonstrate that the proposed design
algorithm can reduce energy consumption by an average
of 28% compared with the existing algorithm.

The subsequent sections of this paper are organized
as follows. In Section 2, the related work on NoC-
based design techniques is briefly reviewed. The over-
all design flow and problem formulation is presented in
Section 3. The detailed design techniques are described in
Section 4. Experimental results are presented in Section 5.
Section 6 concludes with a summary and directions for
future work.

2. RELATED WORKS

Several research groups have investigated design techniq-
ues for minimizing the energy consumption in NoC-based
systems. For example, Simunic and Boyd8 proposed a
power management technique for NoC-based systems.
Based on a network-centric power management scheme,
the proposed technique makes better predictions of future
workload than techniques based on a node-centric power
management approach. While this work focused on PEs,
other techniques,4�5�9–13 have been developed, with the aim
of reducing the energy consumption of communication
links in NoC-based systems, because the communication
links consume significant energy.4 Kim and Horowitz5 pro-
posed variable-frequency links, which can track and adjust
the voltage level to the minimum supply voltage as the
link frequency changes, thus reducing the power dissipa-
tion. The variable-frequency link dissipates power varying
from 21 mW at 1 Gb/s to 197 mW at 3.5 Gb/s, providing
a potential 10X improvement in power.

Based on the variable-frequency links proposed by Kim
et al.,5 Sang et al.4 developed a history-based dynamic
voltage scaling (DVS) policy which adjusts the operating
voltage and clock frequency of a link according to the
utilization of the link and the input buffer. Soterious
et al.9 proposed a simple dynamic power management
technique for communication links based on the commu-
nication traffic variance, in order to reduce leakage power
consumption. Worm et al.10 proposed an adaptive low-
power transmission scheme for on-chip networks. They
minimized the energy required for reliable communica-
tions, while satisfying QoS constraints by dynamically,
varying the voltage on the links.

Unlike these existing techniques, that are all on-line
schemes, the proposed technique is an off-line technique
which assigns the appropriate constant speed to each link.
The information on communication patterns from a task
graph is exploited. Several researchers tackled a similar
problem. There have been off-line scheduling techniques
for combined voltage scaling of processors and commu-
nication links.14�15 However, the target system is not an
NoC-based system, thus these techniques did not address
the network assignment problem.

Hu et al.11 proposed a network assignment algorithm
which is designed to minimize the dynamic power con-
sumption by reducing the communication traffic. Marcon
et al.12 improved Hu’s algorithm by considering the
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communication dependency in addition. Ogras et al.13

proposed the optimization technique for communication
architecture.

However, they did not address the issue of link
speed scaling, but only the network assignment problem,
assuming task assignment and task scheduling had been
completed. Lei and Kumar16 have also used the communi-
cation patterns of a task graph in tile mapping. However,
the objective of the algorithm was to find tile mapping that
minimizes the overall execution time of the task graph.

3. OVERALL DESIGN FLOW FOR
NoC-BASED SYSTEMS

3.1. Specification and Architectural Model

A periodic real-time application is represented as a task
graph (TG) G= �V �E�, which is a directed acyclic graph,
where V is the set of tasks and E is the set of directed
edges between tasks. In G, each directed edge e	�i, �j

represents a precedence relationship between �i and �j .
That is, e	�i, �j
 means that the task �i must complete its
execution before task �j starts its execution. (For descrip-
tive purposes, e	�i, �j
 will be denoted by ei� j .) The period
of the task graph G is denoted by period(G
. A task
�i in G may have a deadline di, which must be met to
ensure correct functionality of the application. Each edge
ei� j is associated with a value w	ei� j 
, which indicates the
amount of communication data required between �i and
�j , in the case that �i and �j are allocated to different PEs.
Figure 2(a) presents an example of a task graph. Each edge
e has a value of w	e
, and the task �3 has a deadline.

Although the proposed design technique can support
NoC topology selection, it is assumed that the regular tile-
based mesh NoC architecture such as Figure 1(a) is given
as target architecture for simple modeling. The network
topology selection algorithm is presented in subsection 4.6.
In the tile-based mesh NoC architecture, an NoC-based
system N with m×m tiles is denoted as a tuple �T �L�,
where T = �t1� � � � � tm� � � � � tm2� is the set of tiles and L =
��1� � � � � �4m	m−1
� is the set of links between tiles. Tiles
are assumed to have the same area �. The link between
ti and tj is denoted by �i→j . The notation src(�i→j 
 and
dst(�i→j 
 is also used to represent the source and destina-
tion of �i→j , respectively. For a link �i, W	�i
 indicates
the total amount of data transferred across the link. The
set of PEs is denoted as R = �r1� � � � � rn�, where ri indi-
cates the i-th PE. It is assumed that the number of PEs and
the number of tiles are the same, i.e., 	R	 = 	T 	. Each tile
has associated coordinate values, ti�x and ti�y which specify
row and column. In this paper, ti�x and ti�y are set to be the
quotient and the remainder of 	i−1
/m, respectively.

3.2. Problem Formulation

For a given task graph G= �V �E�, an initial step assigns
each task in G into one of the available PEs. The function

 ! V → R is used to represent this task assignment step.
The task assignment affects the total communication load
because only the tasks assigned into different PEs gen-
erate communication loads. Each PE is then assigned to
one of the tiles in an NoC-based system. The function
" ! R→ T is used to represent this tile mapping step. The
mapping also affects the total communication load because
the distances between tiles have changed. The routing path
between tiles is then allocated, and the function #! E→ P
is used to denote this routing path allocation step, where
P is the set of link sequences. After the routing path allo-
cation, W	�i
 is set for all �i in L to be

∑
∀ ej ��i∈#	ej 
 w	ej
.

In this paper, only the static minimal-path routing algo-
rithm is considered, because it is more suitable for an
on-chip network and generates less communication traf-
fic than non-minimal routing paths. The routing path allo-
cation step does not affect the total communication load
because only the minimal routing path is considered. How-
ever, since the allocation affects the communication load
of each link W	�
, it also affects the speed of the links.
The task scheduling step determines the execution order of
tasks assigned to the same PE. Since the task scheduling
step converts the task graph G to G′ by inserting addi-
tional edges, it is described with the function O ! G→G′.
Because the communication delay between tasks must be
known for task scheduling, the tile mapping and the rout-
ing path allocation steps are executed first. The link speed
assignment step decides the clock speed of each link in
reducing the energy consumption, by utilizing what would
otherwise be slack time. The function S ! L→ C is used
to denote the link speed assignment step, where C is the
set of possible clock speeds for the links.

The link energy optimization problem for NoC-based
systems can be defined as follows:

Link Energy Optimization Problem
Given G= �V �E�, R and N = �T �L�,
Find the functions  �"�#�O, and S such that
E = ∑

�i∈L
	CL ·W	�i
 · f 	�i
2 +period	G
 ·Pleakage	�i



is minimized
subject to ∀ �i ∈ V � (	�i
≤ di

where CL is the average switching capacitance of the links.
f 	�i
 and Pleakage	�i
 are the clock speed and the leakage
power of a link �i. For a link �i with W	�i
= 0, Pleakage	�i

is 0, because an inactive link can be turned off. (	�i
 is the
end time of �i. The energy consumption can be estimated
more accurately with the high-level power model of the
on-chip network17 or the cycle-accurate on-chip network
simulator.18

Since the task assignment may change the total com-
putation energy consumption on PEs, because of the het-
erogeneous architecture, both the computation energy of
PEs and the communication energy of links should be con-
sidered. However, in this paper, only the communication
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energy is considered to concentrate on the network assign-
ment problem, assuming the homogeneous PEs.

4. ENERGY-EFFICIENT NoC-BASED
SYSTEM DESIGN

Figure 3 presents the design flow for NoC-based systems,
which consists of five optimization steps. Given a task
graph and NoC architecture, the design flow generates
an optimized NoC system design. If the NoC architec-
ture (network topology) is not provided, it should be pre-
established additionally by the topology selection step.
When a predefined routing algorithm is used, the routing
path allocation step is not applied. If the target NoC-based
system does not provide a variable speed communication
link, the link speed assignment step is also excluded. Three
genetic algorithms (GAs) are used to explore the design
space efficiently. These are a GA-based task assignment
algorithm (GA-TA), GA-based tile mapping algorithm
(GA-TM), and GA-based routing path allocation algorithm
(GA-RPA). These algorithms organize nested iteration
loops. For example, for each solution at GA-TM, routing
path allocation, task scheduling and link speed assignment

Task Graph
Description

Link Speed

Task Assignment

Tile Mapping

Routing Path Allocation

Task Scheduling

Link Speed Assignment

Topology Selection

NoC
Architecture

Network Assignment

Optimized NoC System

Fig. 3. Overall design flow for energy-efficient NoC-based systems.

steps are performed to evaluate the fitness value. The GA-
based topology selection algorithm (GA-TS) is used if
there is no given network topology architecture.

The genetic algorithm is chosen due to following two
reasons. Unfortunately, the communication optimization
problem has a very large solution space, as the search
space increases factorially with the number of tiles in an
NoC-based system.11 Even for 16 tiles, there is 16 numbers
of tile mappings. Moreover, since all the design steps
are closely related to the link speed assignment step, it
is unlikely that good speed assignment will be found by
optimizing each step independently. In other words, the
total complexity of the design problem is the product of
the complexity of each design step instead of the sum of
each step.

Genetic algorithms imitate the principles of natural evo-
lution to solve search and optimization problems, and are
a promising technique for system-level design with a large
solution space. GA is particularly suitable for multiple-
objective optimization.19 Figure 4 presents the typical
structure of a genetic algorithm. Starting with an initial
population, a genetic algorithm evolves a population using
the crossover and mutation operations. In the right part
of Figure 4, various design factors which affect the per-
formance of GA, are presented. These factors need to be
selected carefully.

Table I presents the summary of GA operations used for
the link energy optimization problem.

4.1. GA-Based Task Assignment

The more tasks that are assigned to a PE, the larger its
area becomes, because it requires more memory or gates.
Since each tile has the same size, the area constraint may
be expressed as A 	ri
≤�, where A 	ri
 means the area
of a PE ri under the task assignment function  . If there
is an edge e between two tasks assigned to the same PE,
its value w	e
 is changed to 0. This task assignment step

Initialize a population

Select two individuals,
p1 and p2

child = crossover (p1,p2)

child = mutation (child)

Replace the lowest ranked
individual with the child

Terminate ?

- solution encoding
- size of population
- initial solutions

- selection algorithm

- crossover algorithm

- mutation algorithm
- mutation probability

- replacement algorithm
- evaluation algorithm

- termination condition

Fig. 4. Typical structure of genetic algorithm and design considerations.
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Table I. Summary of GA operations for link energy optimization problem.

Design flow Gene encoding Crossover Mutation

GA-TA 1-D array of integer 2-points crossover change a randomly selected gene
GA-TM 1-D array of integer Cycle crossover20 exchange two randomly selected genes
GA-RPA 1-D array of integer Coordinate crossover change a routing path between two ran-

domly selected genes
GA-TS 2-D array of binary 2-D geographic crossover change a randomly selected gene

affects total communication load. A task assignment solu-
tion is represented as an array of integers. For example, in
Figure 5(a), the task �1 is mapped to r8 in the individual p1.
The crossover operation is the two-point crossover, which
is widely used in GAs. The parent individuals p1 and p2

are divided at the same two points and the child individual
c1 is generated from the first part of p1, the second part
of p2, and the third part of p1. The mutation operation
changes the values of randomly selected genes into new
values, which makes up a new individual.

4.2. GA-Based Tile Mapping

A tile mapping solution is encoded as an array of integers.
For example, in Figure 5(b), the PE r1 is mapped to t8
in the individual p1. In order to achieve GA-based tile
mapping, care must be taken in designing the crossover
operation. If a two-point crossover is used for tile map-
ping, illegal solutions would be obtained, because different
PEs may be allocated into the same tile. Therefore, the
cycle crossover is used,20 which is appropriate when the
encoding represents a sequence. Figures 5(b)–(d) demon-
strate the method of making child individuals using the
cycle crossover. In the mutation operation, two randomly
selected genes are exchanged to make a new individual.

For each individual, in order to evaluate fitness value,
routing path allocation, task scheduling, and link speed
assignment steps are performed. In order to reduce the
computation time, whether one individual is topologi-
cally identical to another individual is verified, and the
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Fig. 5. Crossover operations in GA-TA and GA-TM.

evaluation step is omitted if an identical individual has
already been evaluated. In order to achieve this operation,
each individual is first transformed into an ordered form,
and the ordered forms of individuals are compared. The
ordered form has the following two properties:
(1) the PE "−1	t1
 has a smaller index than the
indices of "−1	tm
, "

−1	tm2−m+1
, and "−1	tm2
, where
t1� tm� tm2−m+1 and tm2 are four corner tiles;
(2) the PE "−1	tm
 has a smaller index than the index
of "−1	tm2−m+1
. A tile mapping can be transformed into
an ordered form by rotating or mirroring the tile mapping
structure.

After tile mapping, the set of communication loads,
CL, are composed. For each edge ei� j for which
w	ei� j 
 > 0, a communication load , is made, consisting
of three properties: ,src ="	 	�i

, ,dst ="	 	�j

, and
,data = w	ei� j 
.

4.3. GA-Based Routing Path Allocation

In order to transfer the information between tiles, NoC-
based systems require a method of routing data packets
through the network. There have been several routing algo-
rithms proposed in the past. In general, these algorithms
can be divided into static routing and adaptive routing,
based on when the routing path is decided. While routing
paths are determined at design time in static routing, they
change depending on the network status at run time in
adaptive routing. In this paper, only the static and minimal
path routing algorithm is considered, because it is more
suitable for on-chip networks, and generates less commu-
nication traffic than the non-minimal routing paths. The
most popular static and minimal path routing algorithm is
the XY routing algorithm.

In routing path allocation, it is assumed that the source
tile transmits the data packet with routing information rep-
resented by the sequence of tile identifiers. The interme-
diate routers between the source tile and destination tile
determine the forward direction from the first integer of
the routing information and forward the remaining rout-
ing information. In the regular 2-D Mesh topology such
as Figure 1(a), the routing path allocation step determines
n directions, where the Manhattan distance between two
tiles is n.

The individuals in the GA-based routing path are repre-
sented by one-dimensional arrays of integers. Each array
represents the routing path for a communication load

6 J. Low Power Electronics 2, 1–12, 2006
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Fig. 6. Routing path encoding.

, ∈ CL. For example, Figure 6 presents two different rout-
ing paths for communication load , where ,src = t1 and
,dst = t16. The routing paths p1 and p2 can be represented
as follows:

p1 = ��1→2� �2→3� �3→7� �7→11� �11→15� �15→16�

p2 = ��1→5� �5→9� �9→10� �10→11� �11→12� �12→16�

Care should be taken in generating a routing path solu-
tion, because it is illegal if no communication link exists
between two tiles, which are adjacent in the routing path
solution for the given network topology. Therefore, rout-
ing path allocation requires a special crossover operation.
As presented in Figure 7(a), if a one-point crossover is
used for path routing, illegal solutions may be obtained,
because the communication links �2→9 and �5→3 are not
provided in the network topology. The crossover opera-
tion should guarantee that it generates only legal solutions,
while passing on properties from parent individuals to
child individuals. In order to satisfy these requirements,
a special crossover is invented, called the coordinate
crossover, for path routing. Figure 7(b) presents the coor-
dinate crossover operation. First, the same tile identifiers
are located from two parent individuals (meeting points).
Two different routing paths represented by the parents
meet at the meeting point. For example, in Figure 6, two

1  2 3   7  11   15 16

1  5

deformed child

deformed child

(a) one-point crossover (b) coordinate crossover

1  2

1  5

normal child

normal child

meeting points

9  10  11  12 16

9  10  11  12 16

3   7  11  15 16

11  12 161  5  9  10

11  15 161  2  3  7

1  2  3  7 11  12 16

1  5  9  10 11  15 16

p1

p2

c1

c2

p1

p2

c1

c2

Fig. 7. Crossover operation for routing.

routing paths represented by p1 and p2 meet at tile t11.
(The start tile t1 and the end tile t16 are excluded from the
meeting point.) Second, both parent individuals are divided
just before the meeting points and child individuals are
created, by mixing parts from two parents, similar to the
multi-point crossover operation.

If there are two meeting points mp- and mp., two parent
routing paths divided by the meeting points can be rep-
resented as p1 = �spi� spj� spk� and p2 = �spa� spb� spc�,
where the first tile of the subpaths spj and spb is mp- and
the first tile of the subpaths spk and spc, is mp.. The coor-
dinate crossover operation generates two child solutions,
c1 = �spi� spb� spk� and c2 = �spa� spj� spc�. If two par-
ent solutions are legal, the child solution c1 is also legal
because there are communication links between the last
tile of spi and the first tile of spb, and between the last tile
of spb and the first tile of spk. Therefore, it can be said
that the coordinate crossover only generates legal child
individuals. The child individuals are also guaranteed to
inherit the links both parents share.

For the mutation operation, the routing path between
two randomly selected tiles is changed. Using these spe-
cially designed crossover and mutation operations, only
the legal solution space is explored. For regular tile-based
mesh topology, the simpler GA encoding, crossover and
mutation operations can be used, as presented in Ref. [22].

4.4. Task Scheduling

For task scheduling, a list scheduling algorithm is adopted,
which uses the mobility of each task to determine its pri-
ority. The mobility of a task is defined as the difference
between the ASAP start time and the ALAP end time. In
order to obtain these times, the communication delay of
an edge must be known.

Marcon et al.12 used the communication dependence and
computation graph (CDCG), in order to calculate the com-
munication delay of an edge. Using CDCG, the packet
delay, the routing delay, and the contention delay of each
communication load was estimated. Contention delay may
occur when more than one communication load shares the
same communication link.

In the proposed scheme, the communication dependency
can be identified from the task graph. For two edges ei� j
and en�m, if a path exists from �j to �n in the task graph,
the edge en�m has a dependency on the edge ei� j . When two
independent communication edges ei� j and en�m share the
same communication link �k, the contention delay can be
generated, thus it can be said that en�m is a candidate con-
flicting edge of ei� j for �k	ei� j

�k↔en�m
. However, the con-
tention delay is generated only when two communication
edges ei� j and en�m use link �k simultaneously. In this
case, it can be said that en�m is a conflicting edge of
ei� j 	ei� j

�k⇔en�m
.
It is assumed that the target NoC architecture uses the

wormhole switching algorithm, where a message between
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tiles is transferred in the unit of flit. Prior to estimating the
communication delay of an edge ei� j , two primitive factors,
2r and 2l	ei� j 
 should be estimated. 2r is the time required
for taking a routing decision inside a router. 2l	ei� j 
 is the
maximum time required to transmit a flit through a link.
2l	ei� j 
 has a different value, depending on the operating
speeds of communication links used for the communica-
tion edge ei� j . 2l	ei� j 
 is estimated as follows:

2l	ei� j 
=
⌈
F

B

⌉
1

min�k∈#	ei� j 
	f 	�k



where F and B are the flit size and the bit-width of
communication link, respectively. min�k∈#	ei� j 
	f 	�k

 rep-
resents the clock speed of the communication link with the
lowest speed among the links in #	ei� j 
.

If the message header size is 1 flit, the communication
latency without contention delay can be computed as
follows:7

2 ′	ei� j 
= 6	ei� j 
	2r +2l	ei� j 

+2l	ei� j 

⌈
w	ei� j 


F

⌉

where 6	ei� j 
 is the number of routers through which a
packet of ei� j goes from the source tile to the destination
tile. Depending on the clock speed of a communication
link f 	�k
, the communication delay 2 ′	ei� j 
 of the edge
ei� j is changed.

If there is an edge conflicting with ei� j , the contention
delay should be considered. However, it is very complex
to calculate the exact value of contention delay, because
it depends on various factors such as switching algorithm,
virtual channel, and communication start time. If the exact
communication start time for the wormhole switching
without virtual channel is known, the contention delay can
be estimated, as presented in Figure 8. If message C arrives
at the shared link �k, it should wait until messages A and
B release the shared resource �k because the messages
arrived at �k before C. Therefore, the contention delay of
ei� j can be represented as follows:

2c	ei� j 
 =
∑

�k∈#	ei� j 

2c	ei� j � �k


= ∑
�k∈#	ei� j 


{
max
ec
�k⇔ei� j

	7r 	ec� �k
−7a	ei� j � �k


}

contention delay of message B

contention delay of message C

Message B

Message A

Message C arrive at �k

arrive at �k

arrive at �k

release �k

release �k

release �k

messages

time

Fig. 8. Contention delay of conflicting communications.

where 7r	ec� �k
 is the time when the message ec releases
the link �k and 7a	ei� j � �k
 is the time when the message
ei� j arrives at link �k.

However, the arrival time of a message can be changed
depending on the corresponding task’s execution time.
That is, contention delay is determined by the task’s exe-
cution time. Unfortunately, since the task’s execution time
cannot be known at design time, all candidate conflicting
edges are considered for calculating communication delay:

2c	ei� j 
=
∑

ec
�k↔ei� j � �k∈#	ei� j 


2 ′	ec


Then, the communication delay is 2	ei� j 
 = 2 ′	ei� j 
+
2c	ei� j 
.

4.5. Link Speed Assignment

For link speed assignment, a similar idea as the voltage
and clock speed selection algorithm proposed by Schmitz
and Al-Hashimi23 can be used. The algorithm first esti-
mates the slack time of each task considering the dead-
line and precedence constraint. It then calculates 8E	�i

for a task �i which has slack time. 8E	�i
 is the energy
gain when the time slot for �i is increased by 8t (with a
lower clock speed). After increasing the time slot for task
�i with the largest 8E	�i
, by a time increment 8t, the
same sequence of steps are repeated until there is no task
containing slack time.

While this algorithm determines the operating speed of
each task assigned on the DVS-enabled PE, the proposed
link speed assignment algorithm determines an operating
speed for each link, which does not change dynamically
at run time. In order to estimate the slack time for each
link, the edges whose communication loads share that link
need to be considered. The slack time of a link is the
minimum value among the slack times of the edges, i.e.,
9	�i
 = min�i∈#	ej 
	9	ej

, where 9	�i
 and 9	ej
 are the
slack times of �i and ej , respectively.

4.6. GA-Based Topology Selection

For a more energy-efficient NoC-based system, it is bet-
ter to use application-specific NoC topology,13�24 where
the communication links and switches can be optimized
based on the communication pattern of the target appli-
cation. The GA-based topology selection (GA-TS) algo-
rithm is used to explore all possible NoC topologies
while existing work attempts to find an efficient algorithm
among predefined network topologies in an NoC library.
Figure 9(a) presents an application-specific NoC topology.
The 1×2 switch (one input link and two output links) is
used for switch sw2, instead of the 2× 2 switch. For the
topology presented in Figure 9(a), the connection between
switches can be encoded with a 2-D array of binary num-
bers, as presented in Figure 9(b). The value at the coordi-
nate (i, j
 means whether there is a link from swi to swj .
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Fig. 9. GA encoding for NoC topology.

For example, since there is a link from sw2 to sw3, the
entry in (2, 3) is 1.

Different NoC topologies require different hardware
costs. For example, the NoC topology presented in
Figure 9 requires one 2×0 switch (sw1
, one 2×2 switch
(sw3), and two 1× 2 switches (sw2 and sw4). Comparing
with the mesh NoC architecture, which requires four 2×2
switches, the NoC architecture presented in Figure 9 is
more efficient in terms of energy and area cost.

When the NoC topology is determined by taking advan-
tage of application-specific communication patterns, the
GA operations discussed in Table I should be used with
some modification. Unlike the mesh NoC architecture,
there can be no possible routing path for a communica-
tion load in some tile mapping solutions. For example, if
the tile mapping of Figure 2(c) is used for the network
topology of Figure 9, there is no routing path for the com-
munication from task �2 to tasks �3 and �4.

In this case, tile mapping should be changed using the
mutation operation, such that it may have one or more pos-
sible paths for all communication loads. For example, if a
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1 0 1 1

1 0 0 1

0 0 1 0
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sw2

sw3

sw4

sw1

sw2

sw3

sw4
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0 1 0 1

0 0 0 1

1 0 0 1

0 0 1 0

(b) parent2

(c) child1 (d) child2

Fig. 10. 2-D geographic crossover operation for NoC topology.

link is inserted from sw1 to sw2 into the network topology
of Figure 9, a routing path for the communication from
the task �2 to tasks �3 and �4 can be found.

For the crossover operation of GA-TS, the 2-D geo-
graphic crossover algorithm21 is used. In this crossover
operation, two parent solutions are separated into several
pieces in the same manner. Then, child solutions are gen-
erated by mixing the pieces, as presented in Figure 10.

5. EXPERIMENTAL RESULTS

The efficiency of each optimization technique at the task
assignment, tile mapping, routing path allocation, and
link speed assignment steps, were estimated. For the
experiments, random task graphs g1 to g16 were generated.
Figure 11 presents the energy consumptions of the
communication links under various optimization
configurations.† The results were normalized against the
energy consumption obtained by a design technique
using random task assignment, random tile mapping,
XY-routing, and no link speed scaling.

The first bar for each task graph represents the result
when the link speed scaling technique is applied (optLS
.
The second bar represents the result when the GA-RPA
algorithm is used for routing path allocation, as well as
link speed scaling (optLS+R
. The third bar presents the
result when the GA-TM algorithm for tile mapping is also
applied (optLS+R+TM
. The fourth bar presents the energy
efficiency when all optimization algorithms are used
(optLS+R+TM+TA
. The energy consumption is reduced by
8%, 17%, 27%, and 43% on average by the optLS, optLS+R,
optLS+R+TM, and optLS+R+TM+TA techniques, respectively.
These reduction ratios are dependent on the characteris-
tics of the task graph (e.g., slack time and communication
load) and the performance of random configurations. For
example, link speed scaling (optLS
 presented small energy
reductions because the random task assignment, the ran-
dom tile mapping and the XY-routing generated little slack
time. From these results, it can be known that all design
steps have considerable effect on communication energy,
and it is necessary to optimize the energy consumption at
all design steps. (The task scheduling step is not compared
against other techniques because list scheduling is univer-
sally popular.)

The proposed GA-based NoC-based system design
technique is also compared with previous techniques.‡

†The real energy consumptions of communication links were not esti-
mated. Instead, it is assumed that the energy consumption is propor-
tional to the communication traffic and the square of communication
speed.
‡The proposed algorithm is not compared with the on-line techniques

which adjust the link speed at run time since the energy performance
is dependent on the run-time traffic pattern. If the communication traf-
fic varies significantly at run time, the on-line scheme will show bet-
ter results. But, the on-line scheme does not guarantee the real time
constraint.
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Fig. 11. Effects of nested optimization techniques.

Hu and Marculescu proposed a tile mapping technique
that used a branch-and-bound (B&B) algorithm and a
routing path allocation algorithm to balance the commu-
nication workload across the links.11 Their algorithm is
expanded by integrating it with the proposed task assign-
ment, task scheduling, and link speed assignment algo-
rithms. The integrated algorithm is denoted as BB in this
paper.

The B&B algorithm finds optimal solution by walk-
ing through the search tree. The algorithm consists of
two steps, branch and bound. Starting from the totally
unmapped solution (root node), the branch step generates
a new partially mapped solution (internal node) by map-
ping one unmapped PE of the previous partially mapped
solution until all PEs are mapped (leaf node). In order
to reduce the search space, the bound step determines
whether to branch further from an internal node. The
bound step compares UBC, the best cost of leaf nodes gen-
erated until the current time, and LBC, the lower bound
cost of the leaf nodes to be generated from the current
internal node. If UBC < LBC, the branch step stops to
branch the internal node and generates another internal
node. The technique in Ref. [11] solves the routing path
allocation problem by using a heuristic algorithm. The
heuristic determines the routing path between tiles mapped
at each branch step during the B&B search algorithm. The
heuristic attempts to balance the communication workload
across the links.

In BB, the cost of a solution is estimated from the
amount of traffic, which is proportional to the dynamic
power consumption of the communication links. The BB
algorithm is improved by assuming that a link with no
communication traffic can be turned off. This technique is
called BB+ to distinguish it from BB. The BB+ technique
takes into account the leakage power in estimating the cost
of a solution.

The heuristic for routing path allocation is also
improved in BB+, which provides priority to the links
with non-zero traffic. Using this algorithm, the number of

1: void path_allocation( ) {
2: Sort CL by the number of possible paths of each ,;
3: for each , in CL {
4: cur_tile := ,src ; tar_tile := ,dst ;
5: while (cur_tile �= tar_tile) {
6: � := choose_link(cur_tile, tar_tile);
7: cur_tile := dst(�
 ;
8: W (�
 += ,data;
9: }}}
10: struct link choose_link(cur_tile, tar_tile) {
11: �X := get_xlink(cur_tile, tar_tile);
12: �Y := get_ylink(cur_tile, tar_tile);
13: if (cur_tile.x = tar_tile.x
 return �Y ;
14: else if (cur_tile.y = tar_tile.y
 return �X ;
15: else {
16: if (W(�X
 = 0) return �Y ;
17: else if (W(�Y 
 = 0) return �X ;
18: else if (W(�X
 > W(�Y 

 return �Y ;
19: else return �X ;
20: }}

Fig. 12. Routing path allocation in BB+.

links without traffic can be increased.¶ Figure 12 presents
the improved heuristic for routing path allocation. First,
the list of communication load (CL) is sorted by the
number of possible routing paths of ,. Then, a routing
path of each , is allocated beginning from the , with
the smallest number of possible routing paths. The func-
tion choose_link selects one link between the x-directional
output-link and the y-directional output-link considers the
traffic of links. The functions get_xlink(cur_tile, tar_tile)
and get_ylink(cur_tile, tar_tile) return the x-directional
link and the y-directional link among the output-links of
cur_tile, respectively. The routing path algorithm of BB is
identical to Figure 12 except for lines 16 and 17.

In Ref. [11], it is demonstrated that the proposed algo-
rithm can find an optimal solution within a short period
of time. However, if task scheduling and link speed

¶In routing path allocation, the total bandwidth of a link should be
considered. This is related to the buffer size of a link. However, in this
paper, we assume that there is sufficient buffer capacity and there is no
constraint on bandwidth.
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Fig. 13. Performance comparison between B&B and GA techniques.

assignment are considered, BB and BB+ cannot find an
optimal solution because the exact cost of an internal node
cannot be estimated before task scheduling and link speed
assignment.

Figure 13 presents experimental results that compare the
GA-based algorithm with BB and BB+. In order to only
compare the network assignment step, all algorithms were
executed with the same predetermined task assignment.
The results were normalized against the energy consump-
tion of the random tile mapping and XY-routing technique.
As seen from the results, BB reduces the energy consump-
tion by 16% on average, but sometimes generates worse
results than random mapping (e.g., the task graph g15).
This is because BB does not consider leakage power or
link speed assignment. The BB+ technique and the GA-
based technique reduced energy consumption by 22% and
39% on average, compared with the random mapping and
XY-routing technique. The GA-based technique reduced
energy consumption by 28% on average, compared with
the BB technique.

The task graph of the real application (a multime-
dia system with an H.263 encoder/decoder and an MP3
encoder/decoder) introduced previously is also used in the
experiment.11 Since each task is assigned to a process-
ing element in the task graph, only the tile mapping and
routing path allocation steps are evaluated. The GA-based
algorithm reduced energy consumption by 35% compared
with the random tile mapping and XY-routing technique.

Table II presents the features of the task graphs and
the execution times of the optLS+R+TM algorithm running

Table II. Execution times of optLS+R+TM algorithm.

TG Nnode/Nedge 3×3 4×4 TG Nnode/Nedge 3×3 4×4

g1 26/43 5�2 8�4 g9 30/29 6�5 43�9
g2 40/77 9�3 35�5 g10 36/50 12�5 57�9
g3 20/33 9�6 38�8 g11 37/36 9�0 26�3
g4 40/77 11�6 38�6 g12 24/33 5�0 9�6
g5 20/26 5�7 20�1 g13 31/56 9�9 58�6
g6 20/27 3�6 13�8 g14 29/56 6�2 19�3
g7 18/26 5�1 15�8 g15 12/15 3�2 9�4
g8 16/15 3�2 12�2 g16 14/19 2�8 4�2

on a Pentium-III 500 MHz Linux machine. The execution
time of the genetic algorithm depends on various design
factors, such as the population size, mutation probability,
and termination condition. The population sizes are initial-
ized as 	T 	2/2 and 	T 	 in GA-TM and GA-RPA, respec-
tively. In the experiments, the number of tiles, 	T 	, was 9
	3× 3
 or 16 	4× 4
. From Table II, it can be seen that
the GA-based algorithm takes a long period of time when
a task graph has a large number of edges, i.e., there are
many communication loads. Exceptions such as the task
graphs g3 and g14 are due to the nature of the link speed
assignment algorithm. The link speed assignment algo-
rithm iterates, increasing the delay time of a link by 8t
until there is no slack time. Therefore, it takes longer as a
task graph has long slack times. The speed of the algorithm
can be improved, with a fast link speed assignment mod-
ule. The BB and BB+ performed well when 	T 	 = 9, but
become very slow when 	T 	 = 16. Without special speedup
techniques, BB takes over 1 hour for the graph g2 when
	T 	 = 16. However, the GA-based algorithm takes under
a minute, even for reasonably complex task graphs, this
makes it acceptable for a design methodology.

6. CONCLUSION

In this paper, an energy-efficient algorithm to optimize
the communication energy consumption in NoC-based sys-
tems with voltage scalable links is proposed. The pro-
posed algorithm optimizes communication energy at the
various design steps, i.e., topology selection, task assign-
ment, tile mapping, routing path allocation, and link speed
assignment. Genetic algorithms are used to explore the
large design space of energy-efficient NoC-based systems
effectively. The algorithm reduces the energy consump-
tion of on-chip network by an average of 39%, compared
with an algorithm which uses random tile mapping and
XY-routing.

This paper can be extended in several directions. Due
to the asynchronous communication protocol, the worst-
case communication delay was estimated pessimistically.
However, in identifying the exact conflicting relationship
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between communication edges, a tighter bound on the
communication delay could be obtained. Another issue is
the buffer size of each router. Since the required buffer
size changes depending on the tile mapping and routing
path allocation, it is required to design NoC-based systems
under a buffer size constraint.
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