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Abstract – On-chip compressed cache systems have been 
recently developed that reduce the cache miss count and 
off-chip memory traffic by storing and transferring cache 
line in a compressed form. In order to further expand the 
main memory capacity, in this paper, we present a space-
efficient virtual memory organization technique for the 
on-chip compressed caches. Simulation results show that 
the proposed organization expands the main memory 
capacity by 104-150% with the SPEC benchmark suite, 
which is about twice larger than that achievable with an 
existing on-chip compressed cache.1 
 
Keywords: Virtual memory, memory capacity expansion, 
and on-chip compressed cache. 
 
1 Introduction 

As the performance gap between processor and mem-
ory has increased by 28-48% every year, the memory 
system performance typically dominates the whole com-
puter system performance [1]. In order to improve the 
memory performance, modern computer systems are typi-
cally based on large size on-chip caches with a high off-
chip memory bandwidth. Although these techniques are 
effective in improving the memory performance, they are 
restricted by physical limits such as the on-chip area and 
off-chip pin count. On-chip compressed cache is an alter-
native approach of improving the memory performance. 
By transferring and storing cache lines in a compressed 
form, the compressed caches such as SCMS [2] and CC 
[3] reduce both the cache miss count and off-chip memory 
traffic without having to face the physical limits. Also this 
implies that the compressed caches can reduce the energy 
consumption of on-chip caches and memory buses [3, 4]. 

In this paper, we present a space-efficient virtual mem-
ory (VM) organization technique in order to further ex-
pand the main memory capacity of the compressed caches. 
If we store the compressed cache lines in main memory, 
we can expand the effective main memory capacity sig-
nificantly, and this consequently reduces page swapping 
operations [5] to storage devices. Since the access time of 
hard disk is 5 to 6 orders of magnitude slower than main 
memory devices, if only half of the required memory 
space is available, application program runs ten to hun-
dred times slower [6]. As the required memory space of 
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applications has grown by 50-100% every year [1], ex-
panding the effective memory capacity is an important 
factor [7] for improving the memory system performance. 

Unfortunately, the existing compressed caches are inef-
ficient at expanding the memory capacity as they manage 
compressed cache lines in a coarse-grained manner [2, 3]. 
Specifically, as shown in Figure 1(a), a cache line is man-
aged in a compressed form only if the line can be com-
pressed to less than half of the original size, and then its 
size is assumed to be half of the original line size. How-
ever, this coarse-grained management incurs a large 
amount of internally fragmented spaces as shown in Fig-
ure 1(b). As a memory page consists of many cache lines, 
the fragmented space can significantly degrade the effec-
tiveness of data compression technique in main memory. 

First, in order to address this internal fragmentation 
problem, we mange the compressed cache lines in a finer-
grained manner. However, the fine-grained management 
requires a large amount of metadata for recording the size 
of compressed cache lines. Second, we present a metadata 
grouping technique in order to reduce the metadata size 
without increasing the fragmented space size significantly. 

The SimpleScalar-based [8] simulation results show 
that the proposed organization expands the main memory 
capacity by 104-150% with the SPEC benchmark suite [9]. 
This expansion rate is about twice larger than that achiev-
able with an existing on-chip compressed cache. Never-
theless, the proposed organization only requires 7 bits per 
memory page as a metadata. 

The rest of this paper is organization as follows. The 
proposed memory organization is described in Section 2, 
while the evaluation results are given in Section 3. In 
Section 4, we conclude this paper with a summary. 
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Fig. 1. A coarse-grained compressed data management. 



2 Proposed memory organization 
In the proposed memory organization, when a page is 

loaded into main memory, all cache lines in the page are 
individually compressed by using a hardware compressor. 
We use the X-RL (de)compressor because of its good 
compression rate for small data and fast (de)compression 
speed of at least four bytes per cycle [7]. If a compressed 
cache line is accessed, it is delivered to CPU and is stored 
to an on-chip cache in a compressed form, expanding the 
effective cache capacity and memory bandwidth in the 
same way as the on-chip compressed caches do [2, 3, 4]. 

Our primal design goal is to expand the effective mem-
ory capacity significantly, while reducing the extra meta-
data size. In order to accomplish this goal, the proposed 
organization is based on the following two techniques. 
2.1 Enhancement of the memory capacity expansion 

We use a fine-grained compressed cache line manage-
ment. Specifically, if the management granularity is set to 
be 4, compressed cache lines are handled by the 4 buckets 
as shown in Figure 2(a). The bucket size is defined as the 
ratio of the physical bucket size and the cache line size. 
As shown in Figure 2(b), this fine-grained management 
reduces the internal fragmentation space by 50% as com-
pared with the coarse-grained management. As this reduc-
tion rate is direct proportional to the management granu-
larity, a finer-grained management results in the better 
memory capacity expansion. 

The fine-grained management has additional benefit. 
That is improving the expansion of memory bandwidth 
and the reduction of memory bus power consumption as 
compared with the existing compressed caches. This is 
because in the fine-grained management a much small 
amount of internal fragmentation wastes the memory bus 
bandwidth. 

On the other hand, a finer-grained management re-
quires the larger size of metadata for recording the size of 
compressed cache lines. If the management granularity is 
MGcache, it uses lgMGcache bits per cache line as a metadata. 

In main memory, a compressed page size equals to the 
sum of classified bucket size of all cache lines in the page. 
Because the compressed page size varies depending on 
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Fig. 2. Proposed fine-grained compressed cache line man-
agement when the management granularity is 4. 

the compression rate of cache lines, we also manage the 
compressed pages by using a fine-grained management in 
order to reduce the fragmented space. A fine-grained 
management in main memory requires 2*lgMGmem bits 
per page as a metadata where MGmem is the management 
granularity. The metadata is used to specify both the size 
and location of the compressed page. Because a memory 
page is a superset of cache lines, the parameter MGmem is 
equal to or smaller than the parameter MGcache. 
2.2 Reduction of the metadata size 

The total metadata size used for a compressed page is 
formulated in Eq. 1. The former term means the bits used 
for the size and location of a compressed page, the latter 
term means the bits used for the size of all compressed 
cache lines in the page. In order to reduce this metadata 
size, we divide a memory page into metadata groups and 
record only the largest bucket size of compressed cache 
lines in each metadata group as a metadata. We call this 
the metadata grouping technique. As formulated in Eq. 2, 
a larger metadata group size (MGS) results in the smaller 
metadata size.  

cachemem MG
SizeLineCache

SizePage
MG lglg2 ×+×           (1) 

cachemem MG
SizeGroupMetadata

SizePage
MG lglg2 ×+×       (2) 

We observed that cache lines stored in close have simi-
lar compression rates. For example, when the cache line 
size is 128 bytes and memory page size is 4KB, the stan-
dard deviation of the compression rate of all cache lines in 
a memory page is 7%. In the experiment, we used the 
memory image of the SPEC integer benchmark suite. 

If MGS is 4KB, the compressed page size can be di-
rectly calculated from the stored bucket size of the meta-
data group as formulated in Eq. 3. Thus, the total meta-
data size can be reduced to lgMGmem + lgMGcache bits per 
memory page in this case. This is a significant reduction 
in the metadata size as compared with the existing 
memory compression systems which uses about 62 bits 
per page [7]. 

  SizePageMGMGSizeBucketCache cachemem ××    (3) 

2.3 Overall virtual memory organization 
Figure 3 shows an example of proposed compressed data 
management technique where cache line size is 512 bytes, 
MGmem is 4, MGcache 8, and MGS is 4KB. A memory page 
is divided into 4 sub-pages, and a cache line space is di-
vided into 8 sub-lines (see the dotted lines in Figure 3). 
Because the largest cache bucket size of the compressed 
page 2 is 7 over 8, we record 7 as the cache bucket size of 
the page. Due to this metadata grouping, some cache lines 
incur internal fragmentation, namely internal cache frag-
mentation. Then, 4 sub-pages are allocated for the page, 
incurring internal memory fragmentation. Both the physi-
cal page number and the offset of the allocated sub-pages 
in the physical page (2 bits) are used to specify the loca-
tion of a compressed page. 
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Fig. 3. An example of proposed compressed memory page 
management when the page size is 4KB, cache line size is 
512B, MGmem is 4, MGcache is 8, and MGS is 4KB. 
 

The VM page table entry retains the extra metadata of 
lgMGmem + lgMGcache bits per page. Note that we set 
MGmem and MGmem to be 8 and 16, respectively, in Section 
3. Since the entry size is typically 4 bytes, the proposed 
organization does not cause any additional delay at fetch-
ing the entry if the memory bus bandwidth is higher than 
or equal to 5 bytes. When the entry is fetched, the location 
bits are stored in TLB and the size bits are managed in the 
memory controller. Thus, the TLB entry size has to be 
increased by 3 bits, and this does not delay the access time 
of TLB typically. 

The virtual-to-physical address translation procedure is 
exemplified in Figure 4. A virtual address is translated 
into the real address which uses 8 times larger memory 
space than the physical address space and is only used in 
on-chip caches. If an L2 cache miss occurs, the memory 
controller translates the real address into physical address 
in order to fetch the requested cache line from the main 
memory as shown in the figure. 

Compressed data size can be changed after performing 
a write operation. When a compressed page size is 
enlarged and physically adjacent sub-pages are already 
used, the memory controller has to reallocate new sub-
pages for the page. When the memory module is busy, we 
delay this reallocation operation by storing the enlarged 
data to a reallocated buffer, retained in the controller. 
When the module is idle, the controller performs the real-
location operation in partial cooperation with page-level 
allocator of OS [5], and this is common design complexity 
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Fig. 4. Address translation procedure when L2 cache line 
size is 512 bytes, MGmem is 8, and MGcache is 16. 

in hardware-based memory compression systems [7]. 
Furthermore, we believe that a greedy algorithm can be 
used to reduce the frequency of page reallocation opera-
tions in such as way of allocating new sub-pages as far as 
from the previously allocated sub-pages. 
 
3 Performance evaluations 

We used the SimpleScalar 3.0 [8], a CPU simulator, 
with the SPEC CPU2000 integer benchmark suite [9]. We 
captured the memory image of the benchmark suite after a 
full execution with the reference input workload. The 
compression rate of the data and code images is 21-22% 
and 65-76%, respectively, with the X-RL algorithm. We 
observed that a larger compression unit size results in the 
better compression rate, and this tendency is stabilized 
when the unit size is larger than 512 bytes. 

In order to measure the memory expansion rate pre-
cisely, we use the effective compression rate (ECR) as a 
performance metric. ECR represents the size of used 
physical memory pages over the size of provided logical 
memory pages. Also the compression (CR) and internal 
fragmentation rate (IFR) is used as a metric. CR is defined 
as the ratio of the compressed data size and the original 
data size, and IFR is defined as the ratio of the internal 
fragmentation size and the original data size. IFR is used 
for both internal cache and memory fragmentations. Then, 
ECR is obtained by adding the average CR and the aver-
age IFR. We finally define the memory expansion rate 
(MER) as the reciprocal of ECR minus 1. 

First, we optimized the design parameters of the pro-
posed organization by using the captured data memory 
images. Figure 5 shows that the internal cache fragmenta-
tion rate is similar to half of the reciprocal of MGcache. 
Based on this result, we set MGcache to be 16. Similarly, we 
set MGmem to be 8 by considering the result shown in Fig-
ure 6. Figure 7 show that a larger MGS results in the 
higher internal cache fragmentation rate. Based on this 
result, we set the MGS to be 4KB. Note that when MGS is 
1KB, 2KB, and 4KB, the metadata size is 18 bits, 14 bits, 
and 7 bits, respectively, per memory page.  

Second, we measured the memory expansion rate of the 
proposed organization in comparison with the existing 
cache and memory compression systems [7]. As summa-
rized in Table 1, the maximum expansion rate is 245-
376% and 41-56% for data and code memories,  
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Fig. 5. The measured ECR of data memory images as a 
function of MGcache (MGC) and L2 cache line size. 



respectively, when there is no internal fragmentation. The 
expansion rate of the proposed organization is 104-150% 
and 0-12% for data and code memories, respectively, 
while that of SCMS, an on-chip compressed cache, is only 
54-64% and 0%, respectively, as SCMS incurs a larger 
amount of internal fragmentations. Thus, the memory 
expansion rate of proposed organization is about twice 
larger than that of SCMS. 

As compared with the hardware-based memory com-
pression systems such as CMS and MXT [7], the proposed 
organization provides better expansion rate for data mem-
ory if its compression unit size is higher than 256 bytes. In 
contrast, a software-based memory compression system of 
CBS [7] provides the higher memory expansion rate than 
the proposed organization as it uses a larger compression 
unit size, reducing CR significantly. However, the 
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Fig. 6. The measured ECR as a function of MGmem 
(MGM) and L2 cache line size where MGcache is 16. 
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Fig. 7. The measured ECR as a function of L2 cache line 
size (CLS) and MGS where MGcache is 16 and MGmem is 8. 
 

Table 1. Memory expansion rate. 
Data Code System Comp. 

Algorithm 
Comp. 

Unit Size MER (CR,IFR) MER (CR,IFR)

Optimal X-RL 
LZ(RW) 4KB00 376% (21%,00%) 

245% (29%,00%) 
56% (64%,00%)
41% (71%,00%)

Proposed X-RL 
0064B00
0128B00
0256B00

104% (23%,26%) 
133% (22%,21%) 
150% (21%,19%) 

00% (80%,20%)
00% (75%,25%)
12% (71%,18%)

SCMS X-RL 
0064B00
0128B00
0256B00

054% (23%,42%) 
059% (22%,41%) 
064% (21%,40%) 

00% (80%,20%)
00% (75%,25%)
00% (71%,29%)

CBC LZ(RW) 
WK(4x4) 4KB00 163% (29%,09%) 

212% (26%,06%) 
30% (71%,06%)
09% (86%,06%)

CMS X-Match 4KB00 133% (37%,06%) 
108% (37%,11%) 

41% (65%,06%)
33% (65%,10%)

MXT LZ(1) 1KB00 138% (31%,11%) 10% (79%,12%)
* MER: Memory Expansion Rate, CR: Compression Rate, IFR: Internal 
Fragmentation Rate. 

software-based compression system incurs a long decom-
pression time, and both software- and hardware-based 
compression systems are not able to alleviate the proces-
sor-memory performance gap in the same way as the pro-
posed organization and SCMS do. 
 

4 Conclusion 
We have designed and evaluated a space-efficient VM 

organization for on-chip compressed cache systems. First, 
the proposed organization manages compressed data in a 
fine-grained manner, reducing the fragmented space. Sec-
ond, a metadata grouping technique is used to reduce the 
size of additional metadata, making the proposed organi-
zation applicable to the real memory hierarchy. The simu-
lation results have shown that the proposed organization 
expands the memory capacity by twice larger than an 
existing on-chip compressed cache. 

For future work, we plan to analyze the energy charac-
teristics of the proposed organization. We believe that the 
proposed fine-grained management has a high potential of 
reducing the energy consumption of both on-chip com-
pressed cache and memory buses against the existing on-
chip compressed cache systems. 
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