
A Space-Efficient Virtual Memory Organization
for On-Chip Compressed Caches

Keun Soo Yim, Jihong Kim, and Kern Koh
School of Computer Science and Engineering

Seoul National University, Korea
{ksyim, kernkoh}@oslab.snu.ac.kr, jihong@davinci.snu.ac.kr

Abstract – On-chip compressed cache systems have been
recently developed that reduce the cache miss count and
off-chip memory traffic by storing and transferring cache
line in a compressed form. In order to further expand the
main memory capacity, in this paper, we present a space-
efficient virtual memory organization technique for the
on-chip compressed caches. Simulation results show that
the proposed organization expands the main memory
capacity by 104-150% with the SPEC benchmark suite,
which is about twice larger than that achievable with an
existing on-chip compressed cache.1

Keywords: Virtual memory, memory capacity expansion,
and on-chip compressed cache.

1 Introduction

As the performance gap between processor and mem-
ory has increased by 28-48% every year, the memory
system performance typically dominates the whole com-
puter system performance [1]. In order to improve the
memory performance, modern computer systems are typi-
cally based on large size on-chip caches with a high off-
chip memory bandwidth. Although these techniques are
effective in improving the memory performance, they are
restricted by physical limits such as the on-chip area and
off-chip pin count. On-chip compressed cache is an alter-
native approach of improving the memory performance.
By transferring and storing cache lines in a compressed
form, the compressed caches such as SCMS [2] and CC
[3] reduce both the cache miss count and off-chip memory
traffic without having to face the physical limits. Also this
implies that the compressed caches can reduce the energy
consumption of on-chip caches and memory buses [3, 4].

In this paper, we present a space-efficient virtual mem-
ory (VM) organization technique in order to further ex-
pand the main memory capacity of the compressed caches.
If we store the compressed cache lines in main memory,
we can expand the effective main memory capacity sig-
nificantly, and this consequently reduces page swapping
operations [5] to storage devices. Since the access time of
hard disk is 5 to 6 orders of magnitude slower than main
memory devices, if only half of the required memory
space is available, application program runs ten to hun-
dred times slower [6]. As the required memory space of

1 This research was supported by University IT Research
Center Project in Korea.

applications has grown by 50-100% every year [1], ex-
panding the effective memory capacity is an important
factor [7] for improving the memory system performance.

Unfortunately, the existing compressed caches are inef-
ficient at expanding the memory capacity as they manage
compressed cache lines in a coarse-grained manner [2, 3].
Specifically, as shown in Figure 1(a), a cache line is man-
aged in a compressed form only if the line can be com-
pressed to less than half of the original size, and then its
size is assumed to be half of the original line size. How-
ever, this coarse-grained management incurs a large
amount of internally fragmented spaces as shown in Fig-
ure 1(b). As a memory page consists of many cache lines,
the fragmented space can significantly degrade the effec-
tiveness of data compression technique in main memory.

First, in order to address this internal fragmentation
problem, we mange the compressed cache lines in a finer-
grained manner. However, the fine-grained management
requires a large amount of metadata for recording the size
of compressed cache lines. Second, we present a metadata
grouping technique in order to reduce the metadata size
without increasing the fragmented space size significantly.

The SimpleScalar-based [8] simulation results show
that the proposed organization expands the main memory
capacity by 104-150% with the SPEC benchmark suite [9].
This expansion rate is about twice larger than that achiev-
able with an existing on-chip compressed cache. Never-
theless, the proposed organization only requires 7 bits per
memory page as a metadata.

The rest of this paper is organization as follows. The
proposed memory organization is described in Section 2,
while the evaluation results are given in Section 3. In
Section 4, we conclude this paper with a summary.

Compressed Data

Case 2Case 1

Normalized
Memory Space

Saved Space

100%

100%25%0% 50% 75%

Normalized
Compressed

Cache Line Size

Internal
Fragmentation

Uncompressed
Cache Line 2

Uncompressed
Cache Line 1

Compress

20
%

Case 1 Case 2

Compress

Store Store

20% Compressed
Line 2 (65%)

65%

Bucket
100%

Bucket
50%

(a) Example (b) Space efficiency

Fig. 1. A coarse-grained compressed data management.

2 Proposed memory organization
In the proposed memory organization, when a page is

loaded into main memory, all cache lines in the page are
individually compressed by using a hardware compressor.
We use the X-RL (de)compressor because of its good
compression rate for small data and fast (de)compression
speed of at least four bytes per cycle [7]. If a compressed
cache line is accessed, it is delivered to CPU and is stored
to an on-chip cache in a compressed form, expanding the
effective cache capacity and memory bandwidth in the
same way as the on-chip compressed caches do [2, 3, 4].

Our primal design goal is to expand the effective mem-
ory capacity significantly, while reducing the extra meta-
data size. In order to accomplish this goal, the proposed
organization is based on the following two techniques.
2.1 Enhancement of the memory capacity expansion

We use a fine-grained compressed cache line manage-
ment. Specifically, if the management granularity is set to
be 4, compressed cache lines are handled by the 4 buckets
as shown in Figure 2(a). The bucket size is defined as the
ratio of the physical bucket size and the cache line size.
As shown in Figure 2(b), this fine-grained management
reduces the internal fragmentation space by 50% as com-
pared with the coarse-grained management. As this reduc-
tion rate is direct proportional to the management granu-
larity, a finer-grained management results in the better
memory capacity expansion.

The fine-grained management has additional benefit.
That is improving the expansion of memory bandwidth
and the reduction of memory bus power consumption as
compared with the existing compressed caches. This is
because in the fine-grained management a much small
amount of internal fragmentation wastes the memory bus
bandwidth.

On the other hand, a finer-grained management re-
quires the larger size of metadata for recording the size of
compressed cache lines. If the management granularity is
MGcache, it uses lgMGcache bits per cache line as a metadata.

In main memory, a compressed page size equals to the
sum of classified bucket size of all cache lines in the page.
Because the compressed page size varies depending on

Case 3Case 1

Uncompressed
Cache Line 2

Uncompressed
Cache Line 1

Compress

20
%

Case 1 Case 3

Compress

Store Store

65%

100%

Saved Space

Compressed Data

Normalized
Memory Space

Internal
Fragmentation

Normalized
Compressed

Cache Line Size

Case 2 Case 4

100%25%0% 50% 75%
20%
20
%25%

(1/4)
50%
(2/4)

65%65%
75%
(3/4)

100%
(4/4)

(a) Example (b) Space efficiency

Fig. 2. Proposed fine-grained compressed cache line man-
agement when the management granularity is 4.

the compression rate of cache lines, we also manage the
compressed pages by using a fine-grained management in
order to reduce the fragmented space. A fine-grained
management in main memory requires 2*lgMGmem bits
per page as a metadata where MGmem is the management
granularity. The metadata is used to specify both the size
and location of the compressed page. Because a memory
page is a superset of cache lines, the parameter MGmem is
equal to or smaller than the parameter MGcache.
2.2 Reduction of the metadata size

The total metadata size used for a compressed page is
formulated in Eq. 1. The former term means the bits used
for the size and location of a compressed page, the latter
term means the bits used for the size of all compressed
cache lines in the page. In order to reduce this metadata
size, we divide a memory page into metadata groups and
record only the largest bucket size of compressed cache
lines in each metadata group as a metadata. We call this
the metadata grouping technique. As formulated in Eq. 2,
a larger metadata group size (MGS) results in the smaller
metadata size.

cachemem MG
SizeLineCache

SizePage
MG lglg2 ×+× (1)

cachemem MG
SizeGroupMetadata

SizePage
MG lglg2 ×+× (2)

We observed that cache lines stored in close have simi-
lar compression rates. For example, when the cache line
size is 128 bytes and memory page size is 4KB, the stan-
dard deviation of the compression rate of all cache lines in
a memory page is 7%. In the experiment, we used the
memory image of the SPEC integer benchmark suite.

If MGS is 4KB, the compressed page size can be di-
rectly calculated from the stored bucket size of the meta-
data group as formulated in Eq. 3. Thus, the total meta-
data size can be reduced to lgMGmem + lgMGcache bits per
memory page in this case. This is a significant reduction
in the metadata size as compared with the existing
memory compression systems which uses about 62 bits
per page [7].

  SizePageMGMGSizeBucketCache cachemem ×× (3)

2.3 Overall virtual memory organization
Figure 3 shows an example of proposed compressed data
management technique where cache line size is 512 bytes,
MGmem is 4, MGcache 8, and MGS is 4KB. A memory page
is divided into 4 sub-pages, and a cache line space is di-
vided into 8 sub-lines (see the dotted lines in Figure 3).
Because the largest cache bucket size of the compressed
page 2 is 7 over 8, we record 7 as the cache bucket size of
the page. Due to this metadata grouping, some cache lines
incur internal fragmentation, namely internal cache frag-
mentation. Then, 4 sub-pages are allocated for the page,
incurring internal memory fragmentation. Both the physi-
cal page number and the offset of the allocated sub-pages
in the physical page (2 bits) are used to specify the loca-
tion of a compressed page.

P
a
g
e
1

Memory
Bucket 1

Cache
Bucket

Compressed Memory Page 2

Internal
Cache
Fragmentation

.

.

.

.

.

.

.

.

.

Memory Page

Compressed
Memory Page 2

Compressed
Memory Page 1

Compressed
Memory Page 3

Page 1
Page 2
Page 3

Location SizeMetadata

Internal Memory
Fragmentation

Compressed
Cache Line 8

Compresssed
Cache Line 1

1 0
0 0

1 0
1 1 1
1 0 0

1 0 0
2
1

2

P
a
g
e
2

Fig. 3. An example of proposed compressed memory page
management when the page size is 4KB, cache line size is
512B, MGmem is 4, MGcache is 8, and MGS is 4KB.

The VM page table entry retains the extra metadata of
lgMGmem + lgMGcache bits per page. Note that we set
MGmem and MGmem to be 8 and 16, respectively, in Section
3. Since the entry size is typically 4 bytes, the proposed
organization does not cause any additional delay at fetch-
ing the entry if the memory bus bandwidth is higher than
or equal to 5 bytes. When the entry is fetched, the location
bits are stored in TLB and the size bits are managed in the
memory controller. Thus, the TLB entry size has to be
increased by 3 bits, and this does not delay the access time
of TLB typically.

The virtual-to-physical address translation procedure is
exemplified in Figure 4. A virtual address is translated
into the real address which uses 8 times larger memory
space than the physical address space and is only used in
on-chip caches. If an L2 cache miss occurs, the memory
controller translates the real address into physical address
in order to fetch the requested cache line from the main
memory as shown in the figure.

Compressed data size can be changed after performing
a write operation. When a compressed page size is
enlarged and physically adjacent sub-pages are already
used, the memory controller has to reallocate new sub-
pages for the page. When the memory module is busy, we
delay this reallocation operation by storing the enlarged
data to a reallocated buffer, retained in the controller.
When the module is idle, the controller performs the real-
location operation in partial cooperation with page-level
allocator of OS [5], and this is common design complexity

 = (MBL << 9) + CLN x CBS
 x 512B / 16 (12 Bits)

Physical Page Number
(16 bits)

Real
Address

Virtual
Address

Page Offset
(12 Bits)

 Virtual Page Number
(20 Bits)

Physical
Address

Physical
Line Size

MBL

 Memory Bucket
 Location (3 Bits)

Physical Page Number
(16 bits)

Memory Controller

Cache Line Offset
(9 Bits)

= CBS x 512B / 16
(9 Bits)

MBL

CBS

CLN

 Cache Line
 Number (3 Bits)CLN Cache Bucket

 Size (4 Bits)CBS

TLB

Fig. 4. Address translation procedure when L2 cache line
size is 512 bytes, MGmem is 8, and MGcache is 16.

in hardware-based memory compression systems [7].
Furthermore, we believe that a greedy algorithm can be
used to reduce the frequency of page reallocation opera-
tions in such as way of allocating new sub-pages as far as
from the previously allocated sub-pages.

3 Performance evaluations

We used the SimpleScalar 3.0 [8], a CPU simulator,
with the SPEC CPU2000 integer benchmark suite [9]. We
captured the memory image of the benchmark suite after a
full execution with the reference input workload. The
compression rate of the data and code images is 21-22%
and 65-76%, respectively, with the X-RL algorithm. We
observed that a larger compression unit size results in the
better compression rate, and this tendency is stabilized
when the unit size is larger than 512 bytes.

In order to measure the memory expansion rate pre-
cisely, we use the effective compression rate (ECR) as a
performance metric. ECR represents the size of used
physical memory pages over the size of provided logical
memory pages. Also the compression (CR) and internal
fragmentation rate (IFR) is used as a metric. CR is defined
as the ratio of the compressed data size and the original
data size, and IFR is defined as the ratio of the internal
fragmentation size and the original data size. IFR is used
for both internal cache and memory fragmentations. Then,
ECR is obtained by adding the average CR and the aver-
age IFR. We finally define the memory expansion rate
(MER) as the reciprocal of ECR minus 1.

First, we optimized the design parameters of the pro-
posed organization by using the captured data memory
images. Figure 5 shows that the internal cache fragmenta-
tion rate is similar to half of the reciprocal of MGcache.
Based on this result, we set MGcache to be 16. Similarly, we
set MGmem to be 8 by considering the result shown in Fig-
ure 6. Figure 7 show that a larger MGS results in the
higher internal cache fragmentation rate. Based on this
result, we set the MGS to be 4KB. Note that when MGS is
1KB, 2KB, and 4KB, the metadata size is 18 bits, 14 bits,
and 7 bits, respectively, per memory page.

Second, we measured the memory expansion rate of the
proposed organization in comparison with the existing
cache and memory compression systems [7]. As summa-
rized in Table 1, the maximum expansion rate is 245-
376% and 41-56% for data and code memories,

0

10

20

30

40

50

60

70

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

MGC=2 MGC=4 MGC=8 MGC=16 MGC=32
MGC and L2 Cache Line Size (Bytes)

Cache Fragmentation Rate (%)

Compression Rate (%)

Fig. 5. The measured ECR of data memory images as a
function of MGcache (MGC) and L2 cache line size.

respectively, when there is no internal fragmentation. The
expansion rate of the proposed organization is 104-150%
and 0-12% for data and code memories, respectively,
while that of SCMS, an on-chip compressed cache, is only
54-64% and 0%, respectively, as SCMS incurs a larger
amount of internal fragmentations. Thus, the memory
expansion rate of proposed organization is about twice
larger than that of SCMS.

As compared with the hardware-based memory com-
pression systems such as CMS and MXT [7], the proposed
organization provides better expansion rate for data mem-
ory if its compression unit size is higher than 256 bytes. In
contrast, a software-based memory compression system of
CBS [7] provides the higher memory expansion rate than
the proposed organization as it uses a larger compression
unit size, reducing CR significantly. However, the

0

10

20

30

40

50

60

70

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

3
2

6
4

1
2
8

2
5
6

5
1
2

MGM=2 MGM=4 MGM=8 MGM=16
MGM and L2 Cache Line Size (Bytes)

Memory Fragmentation Rate (%)

Cache Fragmentation Rate (%)

Compression Rate (%)

Fig. 6. The measured ECR as a function of MGmem
(MGM) and L2 cache line size where MGcache is 16.

0

10

20

30

40

50

60

70

5
1
2

1
K

2
K

4
K

5
1
2

1
K

2
K

4
K

5
1
2

1
K

2
K

4
K

5
1
2

1
K

2
K

4
K

5
1
2

1
K

2
K

4
K

CLS = 32 CLS = 64 CLS = 128 CLS = 256 CLS = 512
CLS and MGS (Bytes)

Memory Fragmentation Rate (%)

Cache Fragmentation Rate (%)

Compression Rate (%)

Fig. 7. The measured ECR as a function of L2 cache line
size (CLS) and MGS where MGcache is 16 and MGmem is 8.

Table 1. Memory expansion rate.
Data Code System Comp.

Algorithm
Comp.

Unit Size MER (CR,IFR) MER (CR,IFR)

Optimal X-RL
LZ(RW) 4KB00 376% (21%,00%)

245% (29%,00%)
56% (64%,00%)
41% (71%,00%)

Proposed X-RL
0064B00
0128B00
0256B00

104% (23%,26%)
133% (22%,21%)
150% (21%,19%)

00% (80%,20%)
00% (75%,25%)
12% (71%,18%)

SCMS X-RL
0064B00
0128B00
0256B00

054% (23%,42%)
059% (22%,41%)
064% (21%,40%)

00% (80%,20%)
00% (75%,25%)
00% (71%,29%)

CBC LZ(RW)
WK(4x4) 4KB00 163% (29%,09%)

212% (26%,06%)
30% (71%,06%)
09% (86%,06%)

CMS X-Match 4KB00 133% (37%,06%)
108% (37%,11%)

41% (65%,06%)
33% (65%,10%)

MXT LZ(1) 1KB00 138% (31%,11%) 10% (79%,12%)
* MER: Memory Expansion Rate, CR: Compression Rate, IFR: Internal
Fragmentation Rate.

software-based compression system incurs a long decom-
pression time, and both software- and hardware-based
compression systems are not able to alleviate the proces-
sor-memory performance gap in the same way as the pro-
posed organization and SCMS do.

4 Conclusion
We have designed and evaluated a space-efficient VM

organization for on-chip compressed cache systems. First,
the proposed organization manages compressed data in a
fine-grained manner, reducing the fragmented space. Sec-
ond, a metadata grouping technique is used to reduce the
size of additional metadata, making the proposed organi-
zation applicable to the real memory hierarchy. The simu-
lation results have shown that the proposed organization
expands the memory capacity by twice larger than an
existing on-chip compressed cache.

For future work, we plan to analyze the energy charac-
teristics of the proposed organization. We believe that the
proposed fine-grained management has a high potential of
reducing the energy consumption of both on-chip com-
pressed cache and memory buses against the existing on-
chip compressed cache systems.

References
[1] J. L. Hennessy, D. A. Patterson, and D. Goldberg,
Computer Architecture, A Quantitative Approach, 3rd Ed.,
Morgan Kaufmann Publishers, 2002.
[2] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and
Evaluation of On-Chip Cache Compression Technology,” In
Proceedings of the IEEE International Conference on Com-
puter Design (ICCD), pp. 184-191, 1999.
[3] J. Yang, Y. Zhang, and R. Gupta, “Frequent Value
Compression in Data Caches,” In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 258-265, 2000.
[4] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hard-
ware-Assisted Data Compression for Energy Minimization in
Systems with Embedded Processors,” In Proceedings of the
5th IEEE Design, Automation and Test in Europe Conference
and Exhibition (DATE), pp. 449-453, 2002.
[5] U. Vahalia, UNIX Internals, The New Frontiers, Pren-
tice-Hall Inc., 1996.
[6] H. Garcia-Molina, A. Park, L. R. Rogers, “Performance
Though Memory,” In Proceedings of the ACM Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS), pp. 122-131, 1987.
[7] K. S. Yim, J. Kim, and K. Koh, “Performance Analysis
of On-Chip Cache and Main Memory Compression Systems
for High-End Parallel Computers,” In Proceedings of the
International Conference on Parallel and Distributed Proc-
essing Techniques and Applications (PDPTA), pp. 469-475,
2004.
[8] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an
Infrastructure for Computer System Modeling,” IEEE Com-
puter, Vol. 35, No. 2, pp. 59-67, 2002.
[9] J. L. Henning, “SPEC CPU2000: Measuring CPU Per-
formance in the New Millennium,” IEEE Computer, Vol. 33,
No. 7, pp. 28-35, 2000.

