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Abstract—Although multi-core processors have emerged as a
dominant low-power architectural solution in high performance
processor design, it is still challenging to take a full advantage
of the high power efficiency of multi-core processors. One
such challenge occurs when an operating system tries to assign
a multi-threaded application to a target multi-core processor
in an energy efficient fashion. With an increasing number of
cores combined with sophisticated power management schemes,
it becomes more difficult to decide the most appropriate
runtime configuration for a given application so that the overall
energy efficiency is maximized. In this paper, we propose
a novel performance and power estimation technique, called
PET, for multi-core systems. The PET scheme is based on a
compact but accurate performance and power transformation
model, which aims to predict the performance and power
consumption of a large number of runtime configurations
using hardware performance counters collected in a small
number of representative runtime configurations. Using a
transformation model, PET enables to accurately determine
the best runtime configuration of multi-threaded applications at
runtime with a small overhead over an existing naive solution.
Experimental results on an Intel Q6600 quad-core processor
show that PET can accurately predict the performance and
power consumption of multi-threaded applications running
on 1-4 cores under two different frequency levels with an
average prediction error of 2.1%-8.3% and 3.2%-6.5% over the
measured data, respectively. We also show that PET is effective
in estimating the performance and power consumption of two
co-running applications with an average prediction error of
less than 5%.

Keywords-multi-core, performance estimation, power estima-
tion, multi-threaded

I. INTRODUCTION

As single-core processors rapidly reach the physical limits
of possible design complexity and clock frequency, multi-
core processors have emerged as a dominant low-power
architectural solution in various computing systems ranging
from handheld devices to high-end server systems. The
trend towards multi-core design is motivated by the potential
benefits of multiple power-efficient cores where each core
may potentially sacrifice single-threaded performance to im-
prove overall throughput and energy efficiency. As a result,
applications can achieve higher performance at a reduced
energy consumption by effectively exploiting thread-level
parallelism (TLP). However, there are still many challenges
that need to be addressed to take a full advantage of the
high power efficiency of multi-core processors. One such
challenge occurs when an operating system tries to assign a

multi-threaded application to a target multi-core processor in
an energy efficient fashion. For example, the optimal number
of cores for a multi-threaded application can be significantly
affected by the performance and power characteristics de-
pending on a degree of TLP. In addition, when running a
mixed workload that consists of multiple multi-threaded ap-
plications, the optimal number of cores for each application
may be quite different from that under an isolated execution
of each application because they may compete for the same
number of cores. Without understanding each application’s
energy efficiency under a varying number of cores, however,
it is very difficult for an operating system to determine the
best runtime configurations of multiple applications so that
the overall energy efficiency is maximized.

Unfortunately, an increasing design complexity of multi-
core processors makes an operating system to apply an opti-
mal decision even harder. First, as industry trends show that
the number of cores will continuously increase with process
generations, multi-core design continues to integrate more
and more cores on a single chip. For example, processor
manufacturers already have been developing high perfor-
mance multi-cores such as Intel’s 48-core SCC (Single-Chip
Cloud Computer) [4] and Tilera’s 64-core TilePro64 [12].
Second, modern multi-core processors employ sophisticated
dynamic power management techniques such as clock gat-
ing, power gating, and DVFS, to reduce the processor power
consumption at various design granularities. For example,
Intel’s Turbo Boost technology [9] implements an aggressive
hardware-based power gating for idle cores and DVFS for
active cores. As another example, Samsung’s Exynos 4 Quad
processor [10] provides 13 DVFS levels (i.e., 200 MHz to
1.4 GHz) to support fine-grained power management. With
an increasing number of cores combined with sophisticated
power management schemes, it becomes more difficult to de-
cide the most appropriate runtime configuration for a given
application in both the performance and power perspectives.

A naive approach to determine the best runtime config-
uration would be to use a special training period during
which all possible runtime configurations are evaluated in
advance. The results collected from the training period can
be used to find the best runtime configuration for the rest
of execution times. However, such an approach would not
practical for most modern multi-core processors because
the overall exploration space is potentially huge for an
exhaustive search. Furthermore, the number of required run-
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time configurations can increase even higher when consid-
ering various power-saving techniques with multiple power
modes. To address this problem, previous approaches have
focused on energy-aware scheduling in homogeneous [6], [8]
and heterogeneous [5], [11] multi-core systems and many-
core systems [13]. However, the existing techniques mainly
focus on determining the appropriate DVFS level for running
applications (i.e., threads). Especially, they do not adequately
consider performance and power trade-off depending on
the number of threads for multi-threaded applications. For
example, previous approaches assume that the number of
multiple threads for an application is fixed by a programmer
or determined by a system software based on the number of
available physical cores. In such a case, the potential energy
savings by applying DVFS can be limited because even
an inefficiently parallelized multi-threaded application may
unnecessarily waste on-chip power. Moreover, such ad-hoc
decisions based on partial runtime information can lead to
a sub-optimal energy efficiency of the overall system when
running a mixed workload.

In this paper, we propose a novel performance and power
estimation technique, called PET, for multi-core systems.
The PET scheme is based on a compact but accurate
performance and power transformation model that aims to
accurately predict the performance and power consumption
of a large number of different runtime configurations. In
the PET scheme, a multi-core processor is modeled as a
set of virtual power states (VPS) where each VPS refers
to a different runtime configuration (e.g., a degree of TLP
and the DVFS levels). In the offline model building stage,
we construct both a performance and power model for each
VPS and a transformation model to predict the performance
and power among different VPS’s using hardware perfor-
mance counters. Then, at runtime, PET enables to accurately
determine the best runtime configuration of multi-threaded
applications with a significantly reduced runtime overhead
over an existing naive solution.

In order to validate the effectiveness of the PET model,
we evaluated the proposed approach using a large number
of multi-threaded applications on an Intel Q6600 quad-
core processor. The experimental results show that PET can
accurately estimate the performance and power consumption
of multi-threaded applications running on 1-4 cores under
two DVFS levels with an average prediction error of 2.1%-
8.3% and 3.2%-6.5%, respectively, depending on a target
VPS. The results also show that PET is able to predict
an overall performance and power consumption of two co-
running applications with an average error of less than 5%.

The remainder of this paper is organized as follows. In
Section II, we explain the main motivation of our work.
Section III presents the proposed methodology in detail.
Section IV demonstrates our experimental results. Section V
concludes with a summary and directions for future work.

II. MOTIVATION

Energy-efficient use of multi-core processors remarkably
depends on how an operating system can properly assign
the running applications to their most appropriate runtime

Figure 1: EDP overhead of multi-threaded applications

among different runtime configurations

configurations so that a target system can achieve the max-
imum energy efficiency. Because a primary design goal of
multi-core processors is to provide effective parallel perfor-
mance in a power efficient fashion, multi-core processors
are likely to host both single-threaded and multi-threaded
applications. Therefore, an effective workload assignment
policy for multi-core processors is required to determine not
only how many cores should be assigned, but also which
power optimization technique (i.e., the DVFS level) should
be applied to each application. However, most existing
techniques have focused on how to decide the best DVFS
level of each core (or a processor) based on the power
characteristics of running applications. In particular, they do
not consider multi-threaded applications to achieve potential
benefits of energy efficiency by adequately exploiting TLP.

In order to understand how multi-threaded applications
exhibit different energy efficiency depending on a degree
of TLP as well as the DVFS levels, Figure 1 shows an
energy-delay product (EDP) overhead of multi-threaded ap-
plications from PARSEC and NPB benchmark suite among
different runtime configurations on an Intel Q6600 proces-
sor (a detailed experimental setup is described in Section
IV-A). Given a workload, we define an EDP overhead as
(edpi − edpbest)/edpbest, where edpi is the EDP of the i-th
runtime configuration and edpbest represents the minimum
EDP overhead among all possible runtime configurations. In
our evaluations, we use six different runtime configurations
by changing the number of cores and the DVFS level. We
denote a specific runtime configuration by xCyF where a
processor is configured to use x cores running at y clock
frequency. In Figure 1, we did not include the results for
1C1.6F and 1C2.4F because these two runtime configura-
tions incurred a very large EDF overhead ranging between
370% and 2481%, which imply that assigning too small
number of cores to multi-threaded applications leads to poor
energy efficiency, regardless of the DVFS level.

The figure clearly shows that there are significant varia-
tions in the EDP overhead among different runtime configu-
rations. For uaC, the EDP overhead varies between 15%
and 108%. Even worse, vips exhibits the EDP overhead
of between 74% and 297%. The larger variations in the
EDP overhead indicates that making an incorrect decision in
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Figure 2: Overview of the proposed performance and power

estimation technique using transformation models

workload assignments can lead to a significant degradation
of energy efficiency. For example, executing vips whose best
runtime configuration is 4C2.4F at 2C1.6F would occur the
EDP overhead of 297%.

The figure also shows that the EDP overhead is more
sensitive to a degree of TLP rather than the DVFS levels. At
1.6 GHz, the applications show the maximum EDP overhead
by up to 297%, and 74% on two, and four cores, respectively.
We find the similar results at 2.4 GHz: the maximum
EDP overhead by up to 188% on two cores, and 36%
on four cores. Moreover, even though all workloads yield
the minimum EDP overhead when running on four cores,
they can still incur non-negligible EDP overhead depending
on the DVFS levels. Some benchmarks (e.g., uaC, and
cgC) exhibit the minimum EDP overhead at 4C1.6F, while
other workloads (e.g., blackscholes and bodytrack) are
preferred to run at 4C2.4F. In addition, some workloads (e.g.,
btC and facesim) show a similar EDP overhead at both
DVFS levels. The results strongly indicate that an energy-
efficient workload assignment policy must take into account
of both the DVFS levels and a degree of TLP in a unified
manner. However, most existing techniques on workload
assignment for multi-core processors have focused on how
to determine the best DVFS levels for given applications.
Despite significant variations in energy efficiency depending
on a degree of TLP, they do not carefully determine a
degree of TLP for multi-threaded applications, assuming
that the number of threads for multi-threaded applications is
typically fixed by a programmer or determined by a system
software based on the number of available physical cores.
As shown in Figure 1, we argue that such policies might lead
to a sub-optimal energy efficiency of the overall system.

In order to decide the best runtime configuration, one
possible approach is to apply a training period to exercise
all possible runtime configurations. While such a naive ap-
proach would be appropriate for single-threaded applications
where a target processor provides a limited number of DVFS
levels, it might occur too much energy overhead for multi-
threaded applications because the overall exploration space
is potentially huge for exhaustive search. Moreover, these
overheads increase with the number of cores and DVFS
levels. For example, assuming that applications in Figure
1 are trained in a naive approach to decide the best runtime
configuration, the total EDP overhead for each application

can be defined as (
∑n

i=1 edpi − edpbest)/edpbest, where n
is the number of possible runtime configurations. In such
a case, we observe that the total EDP overhead spikes
by up to 815% for vips and 639% on average, making
a naive approach to be infeasible to be implemented. To
overcome these drawbacks, the proposed PET scheme aims
to estimate the power and performance among different run-
time configurations so that applications can be assigned to
their most appropriate runtime configurations at online with
a significantly reduced runtime overhead over an existing
naive solution.

III. METHODOLOGY

A. Overview of PET

In the PET scheme, a multi-core processor is modeled
as having a set SV PS of N virtual power states (VPS),
denoted by SV PS = {vps1, vps2, ..., vpsN}, where vpsi
corresponds to the i-th runtime configuration (e.g., different
DVFS level and a degree of TLP). Each VPS vpsi in
SV PS is classified as a trained state or a predicted state.
A trained state vpst refers to a VPS where the performance
and power consumption are obtained using the measured
hardware performance counters (HPCs) during the training
period. If the performance and power consumption of a
VPS vpsp can be predicted using the measured HPC data
at trained states, we define vpsp as a predicted state. We
define ST and SP as a set of trained states and predicted
states, respectively. We also define perfi and poweri as
performance and power metrics at vpsi, respectively. For a
given application, PET estimates the performance and power
consumption of the application in predicted states based on
the performance and power data collected in trained states.

In order to accomplish this goal, PET constructs two
models during an offline design stage. First, we construct
a performance and a power model for each VPS in SV PS

using HPCs which are generally available for modern mi-
croprocessors. For each VPS vpsi, we use MIPS (mil-
lion instructions per second) to model perfi. To derive
poweri, we apply a simple linear regression model using
HPCs (as described in Section III-B). Second, we derive
a transformation model which is responsible for predicting
the performance and power consumption of each predicted
VPS vpsp in SP (as described in Section III-C). Using
a transformation model, PET can accurately estimate the
performance and power consumption in predicted states
during runtime. Since a small number of trained states can
cover most of predicted states, the best runtime configuration
can be decided with a significantly reduced cost over a naive
approach.

Figure 2 illustrates an overall procedure of PET using an
example to determine the best runtime configuration for a
multi-threaded application. In this example, we consider a
target processor with eight VPS’s (e.g., four cores with two
DVFS levels at chip-level granularity). In a naive approach,
an application should exercise at eight VPS’s during a
training period to find the best runtime configuration (i.e.,
ST = SV PS). On the other hand, PET allows to train
the workloads only at three trained VPS’s because the
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performance and power consumption in predicted states can
be estimated using a transformation model. For instance,
the measured power and performance at vps1 can be used
to predict the estimated ones at vps2, vps5, and vps6.

B. Power Modeling of Multi-Core Processors
Most previous work on power modeling have shown that

processor power dissipation can be accurately estimated by
applying a simple linear regression model [1], [2]. The
rationale behind this is twofold. First, specific HPCs, such as
the number of instructions, L2 misses, and resource stalls,
have a strong correlation with the actual processor power
consumption. Second, processors exhibit synchronous power
behavior, that is, it is proportional to the computational
load (i.e., utilization) on the processor. Therefore, the in-
stantaneous processor power consumption can be directly
estimated by using current utilization of those HPCs.

While linear regression models have been widely used
to predict the power consumption of single-core processors
because of the simplicity and reasonable modeling accuracy,
the advent of multi-core processors poses new challenges for
deriving an accurate power model. The key difficulty is that
the power consumption of modern multi-core processors is
not always proportional to the computational load on the
processor because recent multi-core processors have an in-
creasing number of hidden power states that are not directly
exposed to an operating system due to sophisticated built-in
DPM policies, processor variations, and the operating envi-
ronment (i.e., temperature) [1]. For these reasons, multi-core
processors are likely to exhibit a different proportionality
between the measured HPCs and actual power consumption,
implying that a single power model is no longer appropriate
for multi-core processors. As a result, the existing techniques
based on a single power model would yield reasonable
modeling accuracy under specific runtime configuration of a
target multi-core processor. In order to rectify this problem,
we use multiple power models to accurately estimate the
power consumption of multi-core processors.

Let SE = {e1, e2, ..., en} be a set of n HPC events used in
a power model. For j-th HPC event ej in SE , we define ri

ej

as a measured value of ej per cycle at vpsi. Then, poweri
can be generally modeled by the following equation:

poweri = ci,0 +

n∑

j=1

ci,j · fj(riej ) + δi (1)

where Ci = {ci,0, ci,1, ..., ci,n} is a set of the model
coefficients, δi is an error term, and fj() denotes a function
form of ej depending on the relationship between ej and
poweri (i.e., linear, logarithmic, or exponential).

In the PET scheme, a power model is constructed for
each VPS during an offline design stage. A large amount
of training data are collected while running a wide range
of training benchmarks on a target processor. The model
coefficients are then determined by correlating HPCs with
measured power consumption to minimize the modeling
error (i.e., δi). Once a power model is generated, it can
be used online to predict power consumption of running
applications without real power measurements.

(a) Instruction (b) L2 miss (c) Stall

Figure 3: The correlation of HPCs among different VPS

C. Building a Transformation Model

The key component of the PET scheme is a transformation
model that enables to accurately estimate the performance
and power consumption at predicted states using the mea-
sured HPC data at trained states. As shown in Figure 2,
a transformation model is represented as a graph where
each node corresponds to an individual VPS and an edge,
vpst → vpsp, from a trained state vpst to a predicted state
vpsp represents that the performance and power consump-
tion of a given workload at vpsp can be estimated using the
measured HPC data at vpst. In this paper, we also call vpsp
is transformable from vpst for each edge, vpst → vpsp.

The key observation in building a transformation model
is that the HPC data at vpsp can be accurately estimated
using the measured data at vpst because of a strong linear
relationship of HPCs between vpst and vpsp. To correlate
whether HPCs show a linear relationship among different
VPS’s, Figure 3 plots the measured HPCs of multi-threaded
applcations on an Intel Q6600 processor. In our evaluation,
we use the following three HPCs in our power model:
the number of instructions (inst), the number of L2 misses
(miss), the number of resource stalls (stall). We assume that
1C1.6F is a trained state and the other VPS’s are predicted
states; the measured HPCs at 1C1.6F are plotted on the x-
axis and those at 2C1.6F, 4C1.6F, and 1C2.4F are plotted on
the y-axis. The figure clearly shows that HPCs have a strong
linear relationship at 2C1.6F and 1C2.4F with the correlation
factor of close to 1. High correlation factors indicate that
the HPC data at predicted states (i.e., 2C1.6F and 1C2.4F)
can be accurately estimated using the measured HPC data
at a trained state (i.e., 1C1.6F). On the other hand, there
is a relatively weak linear relationship between 1C1.6F and
4C1.6F. For this combination, inst, miss, and stall show the
correlation factor of 0.82, 0.98, and 0.79, respectively. The
results imply that 1C1.6F is not a good trained state for
4C1.6F, that is, 4C1.6F should be transformed from another
trained state. (If such a trained state does not exist, 4C1.6F
should be set to a trained state.)

Based on the above observation, the performance and
power consumption at vpsp can be accurately estimated by
exploiting a linear relationship of HPCs between vpst and
vpsp. Specifically, we first derive a transformation model
for individual HPCs. Given a HPC event e, the HPC data at
vpsp can be predicted using the measured data at vpst, by
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(b) Splitted model

Figure 4: An example of building a transformation model

the following equation:

rp
e = c0 + c1 · rte (+ c2 · rte′) (2)

where c0, c1, and c2 are the model coefficients, and rp
e

and rt
e are the HPC data per cycle at a predicted state and

a trained state, respectively. Note that a term c2 · rte′ is
optionally included in Equation (2) because some HPCs such
as e exhibit higher modeling accuracy when other HPCs such
as e′ are used together. For example, we observe that L2 miss
is also a good indicator in deriving a transformation model
for instruction (as described in Section IV-A). By applying
Equation (2) to all HPCs used in a performance and power
model, the performance and power consumption at vpsp can
be predicted using the HPC data at vpst.

Another key problem in building a transformation
model is to determine trained states and predicted
states. Given a multi-core processor where a set
SV PS={vps1, vps2, ..., vpsN} of N VPS’s, we begin
to build a baseline model where vps1 is the only trained
state. Next, we perform a correlation analysis to verify the
baseline model if other VPS’s are transformable from vps1.
Let cor(vpst, vpsp) be the minimum correlation factor
of all HPCs between vpst and vpsp. Because the larger
value of cor(vpst, vpsp) means that all HPCs show the
higher linear relationship between vpst and vpsp, we define
that vpsp is transformable from vpst if cor(vpst, vpsp)
is larger than a predefined threshold θ (i.e., 0 ≤ θ ≤ 1).
For example in Figure 3, when θ=0.9, both 2C1.6F and
1C2.4F are transformable from 1C1.6F, while 4C1.6F is not
transformable from 1C1.6F. If there exists some predicted
states which is not transformable from any trained state,
we split a baseline model into two submodels where those
predicted states form a new submodel. In the submodel, we
perform the above steps repeatedly until all predicted states
are transformable from their corresponding trained states.

Figure 4 illustrates an overall procedure of building a
transformation model using an example where a target
multi-core processor consists of eight VPS’s. In the figure,
we assume that a dashed arrow between vpst and vpsp
denote that vpsp is not transformable from vpst, that is,
a correlation factor between vpst and vpst is below θ. As
shown in Figure 4(a), we first build a baseline model and
verify the model using a correlation analysis. The results
indicate that four VPS’s (i.e., vps3, vps4, vps7, and vps8)
are not transformable from vps1. In such a case, we split
a baseline model where those four VPS’s form the second
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Figure 5: An example of VPS changes when running two

multi-threaded applications

submodel, as shown in Figure 4(b). In a splitted model, vps3
is set to a trained state, assuming that the other three VPS’s
are transformable from vps3. We again perform a correlation
analysis in the splitted model. The results indicate that
all VPS’s in the submodel are transformable from vps3.
Consequently, the resulting transformation model consists
of two submodels where ST = {vps1, vps3}.

D. Extending PET for Mixed Workloads
In the previous section, we have demonstrated that a

transformation model can be effective in deciding the best
runtime configuration for individual applications. In addition
to such individual applications (i.e., running in isolation),
multi-core processors are likely to concurrently host a mixed
workload that consists of multiple single-threaded and multi-
threaded applications to fully utilize the available cores.
In order to handle such realistic workloads, we extend the
PET scheme to estimate the overall performance and power
consumption of a mixed workload.

When multiple applications are running concurrently, the
overall performance and power consumption depends on the
runtime configurations of individual applications in a mixed
workload. To determine the optimal runtime configuration
for each application in a mixed workload, one possible
approach is to examine all possible combinations of runtime
configurations in advance. However, such an approach is
impractical due to a huge exploration space that substantially
increases with not only the possible runtime configurations
of a target processor, but also the number of applications.
While another approach is to build a transformation model
for a mixed workload, such an approach is not still feasible
because it is almost impossible to consider all possible
combinations of different runtime configurations for a mixed
workload. For example, consider N co-running applications
where the number of possible runtime configurations for
each application is M . Then, the resultant transformation
model would include MN nodes at maximum, which is
infeasible to be used at online and even generated at the
offline design stage.

In order to address this issue, we derive an aggrega-
tion function, denoted by ⊕, to estimate the performance
and power consumption for a mixed workload, instead of
building a huge transformation model. Because the pro-
posed transformation model can accurately estimate the
performance and power consumption of individual applica-
tions, the overall performance and power consumption of
a mixed workload can also be accurately predicted using
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an aggregation function. The key observation in deriving an
aggregation function is that a mixed workload exhibits the
VPS changes depending on the execution phase of individual
applications in the workload. Figure 5 shows an example of
how the overall performance and power consumption can be
accurately estimated when two multi-threaded applications,
τ1 and τ2, are running concurrently. In this example, we
assume that both τ1 and τ2 run at 2C1.6F with an isolated
execution time of t1 and t2, respectively. The figure shows
that an overall VPS changes depending on the execution
phase in which τ1 and τ2 are concurrently running. Although
each application is executed at 2C1.6F, an overall VPS is
4C1.6F until t2 because four cores are occupied by both
applications. After τ2 finishes its execution, however, it again
changes to 2C1.6F until t1 because two cores are occupied
only by τ1. For this reason, to accurately predict the overall
performance and power consumption, it should be taken into
an account of how an overall VPS changes depending on the
execution phase of τ1 and τ2.

Based on the above observation, we derive the overall
performance and power consumption of two co-running
applications, τ1 and τ2. We assume τ1 and τ2 is executed
at vpsi and vpsj , respectively. We define vpsk as the
overall VPS at which τ1 and τ2 are executed simultaneously.
Then, the overall performance of τ1 and τ2, denoted by
perf(τ1 ⊕ τ2), can be expressed by the following equation:

perf(τ1 ⊕ τ2) = f(perfk) · p2 + f(perfi) · p1 (3)

where p1 = (t1−t2)/t1, p2 = t2/t1, perfk = perfi+perfj .
We also introduce a performance calibration function f()
to adjust the overall performance at vpsk due to resource
contention. For example, we empirically identify f(perfk)
for an Intel Q6600 processor by the following equation:

f(perfk) = 0.88508 ∗ perfk − log(rk
miss) ∗ 0.03941 (4)

where rk
miss is the aggregated number of L2 misses at vpsk

(i.e., ri
miss+rj

miss). Likewise, we model the overall power
consumption, power(τ1 ⊕ τ2), as follows:

power(τ1 ⊕ τ2) = powerk · p2 + poweri · p1 (5)

where powerk is an aggregated power consumption at vpsk.
Based on Equation (1), the overall power consumption,
powerk, can be modeled by the following equation:

powerk = ck,0 +

n∑

j=1

ck,j · fj(rkej ) (6)

where rk
ej is the aggregated HPC data ej at vpsk.

Based on equation (3) and (5), the overall performance
and power consumption of N co-running applications can
be generalized as perf(τ1 ⊕ τ2 ⊕ τ3 ⊕ ...) and power(τ1 ⊕
τ2 ⊕ τ3 ⊕ ...), respectively.

IV. EXPERIMENTS

A. Experimental Setup
Our testbed is an Intel Q6600 quad-core processor with 6

MB on-chip L2 cache running Linux 2.6.31. The processor
supports per-chip DVFS with two frequency levels: 1.6 GHz
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(b) Splitted model

Figure 6: Transformation models for Intel Q6600 processor

Figure 7: A correlation analysis for Intel Q6600 processor

and 2.4 GHz. Based on the target configuration, we consider
six VPS’s from 1C1.6F to 4C2.4F. In our evaluation, we
ignore some VPS’s such as 3C1.6F and 3C2.4F because
multi-threaded applications typically run with 2n threads.
In order to measure processor power consumption, we use
the approach proposed in [2]. An agilent 34410A digital
multimeter (DMM) is used together with a Fluke i410
current probe to collect the current running through the
12V power lines from the processor. The actual power
consumed would be the measured current multiplied by 12V,
where the current is read through a USB cable using a
USBTMC device driver in Linux kernel. We also collect
HPCs using the Linux perf infrastructure and the perfmon2
library [3]. The measurement period of power consumption
and HPCs are set to 20 ms and 100 ms, respectively. For
a regression analysis, we use the R statistical software. In
our evaluation, we use 14 multi-threaded benchmarks from
the PARSEC and NAS Parallel Benchmark (NPB) combined
with various input data sets, totaling 33 different benchmark
combinations.

In order to build a power model, we first classify the
available HPCs of our target processor into three different
categories covering the major microarchitectural components
that heavily influence processor power consumption: instruc-
tion, memory, and stall. We then choose the top-ranked HPC
from each category which has the largest correlation with
actual power consumption among all HPCs in the same
category. In particular, we use the following three HPCs
in our power model: the number of instructions (inst), the
number of L2 misses (miss), the number of resource stalls
(stall). Based on Equation (1), we derive a power model for
an Intel Q6600 processor by the following equation:

poweri = ci,0+ ci,1 · riinst+ ci,2 · log(rimiss)+ ci,3 · ristall
(7)

In order to generate a transformation model, we begin
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(a) Performance (b) Power

Figure 8: Overall transformation accuracy

to build a baseline model where ST ={vps1}, as shown in
6(a). Figure 7 shows a correlation analysis for an Intel
Q6600 processor with θ=0.9. The first five bars show the
results for a baseline model. We observe that vps2, vps4,
and vps5 are transformable from vps1 with the minimum
correlation factor of 0.96, 0.99, and 0.91, respectively. On
the other hand, vps3 and vps6 are not transformable from
vps1 because the minimum correlation factor at those VPS’s
are 0.79 and 0.69, respectively. As depicted in the sixth bar
vps3 → vps6, such a weak linear relationship of vps1 →
vps3 and vps1 → vps6 can be improved by exploiting a
strong linear relationship between vps3 and vps6. Based on
the correlation analysis, we divide a baseline model into two
submodels where ST = {vps1, vps3}. Figure 6(b) describes
the detailed transitions between trained states and predicted
states in a splitted model. For each transition between vpst
and vpsp, we derive a transformation model for individual
HPCs based on Equation (2), by the following equations:

rp
inst = c0 + c1 · rtinst + c2 · rtmiss (8)

log(rp
miss) = c0 + c1 · log(rtmiss) (9)

rp
stall = c0 + c1 · rtstall + c2 · rtmiss (10)

B. Validation of Transformation Models
Figure 8(a) compares the average estimation errors of

performance between a baseline and a splitted model. In the
figure, the prediction error for a splitted model at vps3 is
0% because vps3 is a trained state in a splitted model. Both
transformation models show a reasonable modeling accuracy
with the prediction error of 5.6% at vps2, 2.1% at vps4, and
8.3% at vps5. However, a baseline model exhibits a high
degree of prediction errors of 13.5% at vps3 and 18.2%
at vps6, because those VPS’s are not transformable from
vps1. Such a high prediction error at vps6 is dramatically
improved under a splitted model with the estimation error
of 4.1%.

Figure 8(b) shows the average prediction errors of power
consumption between a baseline and a splitted model. In
the figure, MP uses the measured HPC data at all VPS’s,
while MP+baseline and MP+splitted use the estimated HPC
data at predicted states by applying a baseline and a splitted
model, respectively. Hence, the estimation errors for MP
indicate the modeling accuracy of the power model itself
for each VPS (i.e., the lower bound of the estimation error

(a) Performance

(b) Power

Figure 9: Transformation accuracy between a baseline model

and a splitted model at vps6

under MP+baseline and MP+splitted). The estimation error
under MP is between 3.2% and 6.7%. Under MP+baseline,
the estimation error varies between 4.2% and 6.5%. The
error is further reduced between 3.2% and 6.5% under
MP+splitted. The results indicate that the prediction errors
under MP+baseline and MP+splitted are within 2% and 1%
of MP, respectively. In other words, MP+splitted is close to
MP in terms of the modeling accuracy.

C. Effects of Splitting a Transformation Model

In this section, we further study how a splitted model can
achieve a higher modeling accuracy than a baseline model.
Figure 9(a) compares the prediction errors of performance
across benchmarks under those two models at vps6. A
baseline model performs quietly poor with the prediction
error of up to 94%. While some benchmarks are predicted
well (e.g., bodytrack, isB, and uaA), a baseline model
still exhibits significantly higher estimation errors than a
splitted model for most of the benchmarks. We observe
that a splitted model is almost 10 times more accurate on
average than a baseline model. Under a baseline model, the
prediction errors of blackscholes and spB are 34% and
46%, respectively. On the other hand, the errors of those
workloads under a splitted model remarkably decrease by
3% and 6%, respectively. Moreover, for spC, a baseline
model shows a remarkably large estimation error of 94%,
while the error is just 2% under a splitted model.

Figure 9(b) shows the prediction errors of power con-
sumption across benchmarks under those two models at
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Figure 10: Performance and power estimation of two co-

running applications

vps6. We observe that the results of power consumption are
similar to those of performance. MP+splitted is apparently
more accurate than MP+baseline. While the prediction errors
of the benchmarks are up to 13% under MP+baseline, the
errors are 8% at maximum under MP+splitted. Specifically,
an estimation error of freqmine omp is 13% and 8% under
MP+baseline and MP+splitted, respectively. In addition, a
prediction error of spC is 9% under MP+baseline, while
the error is 1% under MP+splitted. More importantly, we
observe that the modeling errors of MP+splitted across
benchmarks is within 2% of MP on average. The results
imply that MP+splitted is close to MP in terms of the
modeling accuracy.

D. Transformation Accuracy for Mixed Workloads
We also evaluate how PET can accurately estimate the

performance and power consumption of a mixed workload.
We consider two multi-threaded applications running con-
currently on the target processor where each application
is assigned one or two cores at 1.6 GHz or 2.4 GHz
(i.e., 1C1.6F to 2C2.4F). For evaluation, we train each
application at 1C1.6F to collect the HPC data and predict the
performance and power consumption at three other VPS’s
using a transformation model. We then compute the overall
performance and power consumption of a mixed workload
at four possible combination of VPS’s from 1C1.6F+1C1.6F
to 2C2.4F+2C2.4F. Figure 10 compares the estimated per-
formance and power consumption of two co-running appli-
cations, compared to the measured data. The figure shows
that PET also enables to predict the overall performance and
power consumption of mixed workloads with an average
modeling error within 5% for both performance and power
consumption.

V. CONCLUSIONS

In this paper, we have proposed a fast and accurate
performance and power estimation technique, called PET,
for multi-core processors. The novelty of the PET scheme is
that a transformation model enables to accurately predict the
performance and power consumption of multi-threaded ap-
plications with a significantly reduced runtime overhead by
selectively training them on a small set of VPS’s. In addition,
we also present how the PET scheme can be extended to
estimate the overall performance and power consumption of
a mixed workload. While this paper has focused on applying
PET for multi-core systems, PET can also be applied to
more complicated systems such as homogeneous many-core
systems and heterogeneous multi-core systems. Exploring
these extensions is a part of our future work.
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