
An Opcode Encoding Method for Low-Power Instruction Fetch

Sunghwan Kim Jihong Kim

Department of Computer Science Department of Computer Science

Seoul National University Seoul National University

Seoul, Korea 151-742 Seoul, Korea 151-742

Tel: +82-2-880-5378 Tel: +82-2-880-8792

Fax: +82-2-871-4912 Fax: +82-2-871-4912

e-mail: shift@davinci.snu.ac.kr e-mail: jihong@davinci.snu.ac.kr

Abstract| In designing today's mobile embedded

systems such as cellular phones and PDAs, power

consumption is an important design constraint. In

a CMOS circuit, switching activity accounts for over

90% of total power dissipation. In this paper, we de-

scribe a method of encoding opcodes for low-power in-

struction fetch by reducing the switching activity from

the instruction fetch logic. To reduce the switching

activity from the instruction-fetch logic, our method

encodes opcodes so that more frequently consecutive

instruction pairs have a smaller Hamming distance

between their opcodes. Our experiment shows that

the switching activity reduction of 36.4% to 66.7% is

achievable over a naive encoding method.

I. Introduction

Power consumption has become a dominant design con-

straint for mobile embedded systems such as cellular

phones and PDAs. In digital CMOS circuits (that use

well-designed logic gates), switching activity accounts for

over 90% of total power consumption [1]. Therefore, many

techniques have been proposed and developed to reduce

the amount of switching activity in multiple levels of de-

sign abstraction [2].

One papular approach widely used in reducing the

switching activity is to encode digital values so that the

number of bit changes by the values are reduced. For ex-

ample, bus-invert coding tries to minimize the power dis-

sipated in system bus by dynamically inverting the bus

lines if the inversion reduces the number of bits switched

on system bus [3]. Gray code addressing takes advantage

of temporal redundancy in the instruction access patterns

during program execution by using Gray-coded addresses

as instruction addresses [4]. Register relabeling modi�es

the register number assignments so that more frequently

consecutive register pairs have a smaller Hamming dis-

tance, reducing the switching activity in the register �elds

during instruction fetches and decodes [5].

In this paper, we describe a method of encoding op-

codes for low-power instrucion fetches by reducing the

switching activity from the instruction fetch logic. Many

redundant bit changes between consecutive instructions

can be removed by encoding opcodes so that more fre-

quently consecutive instruction pairs have a smaller Ham-

ming distance between their opcodes. In principle, our

method is similar to Gray code addressing [4] and reg-

ister relabeling [5], in that digital values are statically

encoded to minimize the number of bit changes by the

values. However, we believe that this is the �rst attempt

applying the low-power encoding scheme for the opcode

encoding. For benchmark programs we tested, we were

able to reduce the switching activity by 36.4% to 66.7%

over a naive encoding method. We explain the opcode en-

coding method in Section II and report the experimental

results in Section III.

II. Low-Power Opcode Encoding

A. Basic Idea

When a new instruction is fetched from the instruction

cache into the instruction register, many bit positions of

the current instruction cache bus and instruction register

are switched to the opposite state. The switching activity

during the instruction fetch phase is directly proportional

to the number of bits switched in the instruction cache bus

and instruction register between the successively fetched

instructions. In order to reduce the switching activity

from the instruction fetch logic, therefore, it is necessary

to encode each �eld of an instruction so that more fre-

quently consecutive �eld values have a smaller Hamming

distance between their values. Our method of encoding

opcodes is based on the observation that the distribu-

tion of instruction transitions is not uniform, but highly

skewed. By assigning opcodes with a smaller Hamming

distance to more frequently consecutive instruction pairs,

the switching activity from the opcode �eld can be de-

creased.



0.10

0.05

0.05

0.0
0.05

0.0

0.050.25

0.05 0.40

v

v

v

v

1

2

3

4

Fig.1. An Example Instruction Transition Graph G

B. Instruction Transition Graph

Once an instruction set architecture of a microproces-

sor is determined and its compiler is available, using the

benchmark programs of the target application domains

of the microprocessor, we can measure the instruction

transition frequencies for all the pairs of the instructions.

The instruction transition frequencies can be represented

by an instruction transition graph (ITG) G = (V;E;w)

where V is a set of instructions,E is a set of the undirected

edges between all the elements in V , and w is a probability

density function that maps each edge e = (v1; v2) in E to

a real number between 0 and 1. w(e) indicates the relative

frequency of the instruction transitions between v1 and v2.

Fig. 1 shows an example instruction transition graph G

with four instructions. Each edge represents the relative

transition frequency between two instructions connected

by the edge. For example, the transition frequency be-

tween instructions v2 and v3 is 0.25.

An instruction transition graph of a benchmark pro-

gram can be constructed by counting the number of tran-

sitions between all the pairs of the instructions. Once an

instruction transition graph of an individual benchmark

program is obtained, a global instruction transition graph

can be built by merging the individual instruction transi-

tion graphs using an appropriate weighting scheme (e.g.,

equal-time weighting).

C. Optimal Opcode Encoding

Given a global instruction transition graph G =

(V;E;w), our goal is to �nd an opcode assignment that

minimizes the number of bit changes on the opcode �eld.

If an instruction set architecture has M instructions, we

need at least dlog2Me-bit codes to uniquely identify the

M instructions. An opcode assignment can be repre-

sented by an opcode assignment function f : V ! S

where S is a set of binary codes of length dlog2 jV je. The
quality of the opcode assignment function is determined

by our power metric asa(G; f), the average switching ac-

Instruction Opcode Instruction Opcode

v1 00 v1 00

v2 01 v2 01

v3 10 v3 11

v4 11 v4 10

a. assignment function f1 b. assignment function f2

asa(G; f1) = 1:45 asa(G; f2) = 0:85

Fig.2. Two Opcode Assignment Functions for the Instruction
Transition Graph G shown in Fig. 1

tivity per instruction in G under f , which is de�ned as

follows:

asa(G; f) =
X

e=(v1;v2)2E

w(e)� h(f(v1); f(v2))

where h is a function that returns the Hamming distance

between two binary codes. As an example, consider the

instruction transition graph G shown in Fig. 1. For two

opcode assignment functions f1 and f2 shown in Figs. 2a

and 2b, we can see that asa(G; f1) is 1.45 and asa(G; f2)

is 0.85. That is, the switching activity in the opcode �eld

is reduced by 41.4% by changing the opcode assignment

function from f1 to f2.

Finding an optimal opcode assignment function from

an instruction transition graph is an NP-hard problem [6].

For an approximate solution, we have used three heuris-

tics, 2-opt [7], simulated annealing [8], and slack-based

heuristic [6]. The 2-opt heuristic repeatedly swaps the

opcodes of randomly selected two instructions if the swap

results in the switching activity reduction. When a locally

optimal solution is found, the 2-opt heuristic restarts an-

other local search from a random solution. Simulated an-

nealing is similar to the 2-opt heuristic, but it may swap

the opcodes even if the swap increases the switching activ-

ity. The slack-based heuristic �rst sorts all the instruction

pairs in the decreasing order based on their contributions

to the total switching activity, then changes the opcodes

starting from the �rst instruction pair in the sorted list

to reduce switching activity.

D. Decoding Restriction

In practice, for a simpler decoding logic implementa-

tion, we often do not have the complete freedom in as-

signing opcodes to the instructions. For example, the

instructions of similar types may have the same bit pat-

tern for some of their opcodes. In order to re
ect this

restriction during the optimization process, the opcode

�eld is divided into two sub�elds, the decode-restricted

sub�eld and decode-free sub�eld. The decode-restricted

sub�eld represents the portion of the opcode whose encod-

ing is limited for a simpler decoder implementation. The

decode-free sub�eld, on the other hand, can be assigned

to any code possible.



TABLE I

Top 10 Instruction Pairs with the Highest Transition

Frequencies

SPEC CPU95 Benchmark UTDSP Benchmark

Inst. Pair Frequency Inst. Pair Frequency

sll, addu 6.6% addiu, sw 4.8%

mul.d, l.d 3.9% addiu, lw 4.4%

lw, lw 3.5% lw, lw 3.2%

sw, sw 3.3% sw, sw 3.1%

addu, l.d 2.9% addiu, addiu 2.9%

add.d, l.d 2.8% addu, sw 2.8%

addu. lw 2.8% lw, bne 2.2%

addiu, addiu 2.4% addiu, addu 2.2%

addiu, sw 2.3% sw, lw 2.2%

addiu, lw 2.1% addiu, beq 2.1%

total 32.6% total 29.9%

To �nd an optimal opcode encoding under the decod-

ing restriction, we use a two-phase optimization method.

In the �rst phase, the encoding of decode-restricted sub-

�eld is determined. Instructions that have the same

value for the decode-restricted sub�eld form an instruc-

tion group. To minimize the switching activity from the

decode-restricted sub�eld, information on the transition

frequencies between the instruction groups is necessary.

The transition frequencies between the instruction groups

can be extracted from the global instruction transition

graph and represented by a group transition graph (GTG).

A group transition graph can be constructed in a similar

fashion as an instruction transition graph except that a

vertex represents an instruction group, not an instruction.

Given a group transition graph, we can �nd the encod-

ing for the decode-restricted sub�eld with the same man-

ner as the optimal opcode encoding from an instruction

transition graph is found. In the second phase, with the

decode-restricted sub�eld �xed, the encoding of decode-

free sub�eld is decided using an appropriate heuristic.

III. Experimental Results

In order to compare the switching activity reduction

over a naive opcode encoding method, we have performed

experiments using the SimpleScalar tool set [9]. The Sim-

pleScalar architecture is a derivative of MIPS architec-

ture and has 119 instructions with the 7-bit opcode �eld.

Two benchmark suites, SPEC CPU95 benchmark [10] and

UTDSP benchmark [11], were used for the experiments to

evaluate the applicability of the proposed method in the

di�erent application domains. Two ITGs, GSPEC and

GUTDSP , were built from the instruction transition in-

formation collected from the modi�ed SimpleScalar sim-

ulator. As expected, the probability density functions

wSPEC and wUTDSP of GSPEC and GUTDSP , respec-

tively, were highly skewed: for example, about 1% of the

total instruction pairs accounted for about 90% of the

TABLE II

Switching Activity Reduction Results from SPEC CPU95

Benchmark

2-opt Simulated Slack-based

Heuristic Annealing Heuristic

applu 62.1% 62.1% 59.9%

compress 44.3% 45.8% 46.2%

fpppp 50.5% 51.2% 51.0%

gcc 39.6% 38.9% 39.3%

m88ksim 45.2% 47.1% 49.2%

perl 40.3% 38.9% 40.7%

tomcatv 45.9% 44.6% 44.1%

wave 53.9% 51.3% 47.1%

average 49.1% 49.5% 48.0%

TABLE III

Switching Activity Reduction Results from UTDSP

Benchmark

2-opt Simulated Slack-based

Heuristic Annealing Heuristic

V32 41.7% 38.5% 40.3%

adpcm 43.0% 46.6% 44.5%

edge detect 37.5% 36.4% 37.0%

histogram 43.9% 40.9% 41.8%

jpeg 45.0% 48.9% 45.9%

lpc 37.4% 40.8% 38.7%

spectral 66.7% 66.7% 66.7%

trellis 46.3% 50.8% 50.6%

average 45.2% 46.3% 45.7%

total instruction transitions. Table I lists the top 10 in-

struction pairs that have the highest transition frequen-

cies. The top 10 instruction pairs (out of the total 7140

pairs) account for 32.6% and 29.9% of the total instruction

transitions for SPEC CPU95 and UTDSP, respectively.

From the ITGs, the optimized opcode assignment func-

tions fSPEC and fUTDSP are obtained using the three

heuristics described in Section II.C. Tables II and III

summarize the switching activity reduction results for the

selected benchmark programs over the original opcode as-

signment used for SimpleScalar. As shown in Tables II

and III, three heuristics performed equally well. With

the 2-opt heuristic, on an average, switching activities

were reduced by 49.1% for SPEC CPU95 and 45.2% for

UTDSP. In order to consider the decoding restriction, we

have performed the experiments with the upper three bits

(out of the 7-bit opcode �eld) set as the decode-restricted

sub�eld for a simpler decoding. Tables IV and V show

the switching activity reduction results under the decod-

ing restriction using the 2-opt heuristic. Although the

improvements are smaller than ones reported in Tables II

and III, on an average, the switching activity reduction

of 38.2% and 36.6% is achieved for SPEC CPU95 and

UTDSP, respectively.



TABLE IV

Switching Activity Reduction Results from SPEC CPU95

Benchmark under the Decoding Restriction

No Decoding

Restriction Restriction

applu 62.1% 57.8%

compress 44.3% 32.0%

fpppp 50.5% 39.2%

gcc 39.6% 26.0%

m88ksim 45.2% 30.0%

perl 40.3% 30.7%

tomcatv 45.9% 27.1%

wave 53.9% 48.0%

average 49.1% 38.2%

IV. Conclusion

A method of encoding opcodes for low-power instruc-

tion fetch is presented. It is based on the observation that

the distribution of the instruction transitions is highly

skewed. Our method exploits this observation in the op-

code encoding so that more frequently consecutive in-

struction pairs are encoded to have a smaller Hamming

distance between their opcodes. Experimental results

show that we can reduce the switching activity from the

instruction fetch logic by 36.4% to 66.7% over a naive

opcode encoding method. Considering the decoding re-

striction for a simpler decoding, the encoding method is

still e�ective, reducing the switching activity by 26.0% to

57.8% over a naive encoding method.

Acknowledgement

This research was supported in part by S.N.U. Posco

Research Fund (98-09-2093).

References

[1] A. Chandrakasan, T. Shung, and R. W. Brodersen, \Low power

CMOS digital design," Journal of Solid State Circuits, Vol. 27,

No. 4, pp. 473-484, 1992.

[2] S. Devadas and S. Malik, \A Survey of optimization techniques

targeting low power VLSI circuits," Proceedings of the 32nd

Design Automation Conference, pp. 242-247, 1995.

TABLE V

Switching Activity Reduction Results from UTDSP

Benchmark under the Decoding Restriction

No Decoding

Restriction Restriction

V32 41.7% 32.7%

adpcm 43.0% 34.6%

edge detect 37.5% 33.0%

histogram 43.9% 33.9%

jpeg 45.0% 37.5%

lpc 37.4% 27.8%

spectral 66.7% 50.0%

trellis 46.3% 42.0%

average 45.2% 36.6%

[3] M. R. Stan and W. P. Burleson, \Bus-invert coding for low-

power I/O," IEEE Transactions on VLSI Systems, Vol. 3, No.

1, pp. 49-58, 1995.

[4] L. Su, C. Y. Tsui, and A. M. Despain, \Low power architec-

ture design and compilation techniques for high-performance

processors," Proceedings of COMPCON'94, pp. 489-498, 1994.

[5] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh,

\Techniques for low energy software," Proceedings of the 1997

International Symposium on Low Power Electronics and De-

sign, pp. 72-75, 1997.

[6] V. Veeramachaneni, A. Tyagi, and S. Rajgopal, \Re-encoding

for low power state assignment of FSMs," Proceedings of the

International Symposium on Low Power Design, pp. 173-178,

1995.

[7] E. Aart and J. K. Lenstra, Local search in combinatorial op-

timization, John Wiley & Sons Ltd., Ba�ns Lane, Chichester,

1997.

[8] L. Davis and M. Steenstrup, Handbook of Genetic Algorithms,

L. Davis Ed., PHG Van Nostrand Reinhold, 1991.

[9] D. Burger and T. M. Austin, \The SimpleScalar tool set, ver-

sion 2.0," http://www.cs.wisc.edu/~mscalar/simplescalar.html,

1997.

[10] SPEC, \SPEC CPU95 benchmarks," http://www.spec.org/

org/cpu95 , 1995.

[11] M. Stoodley and C. Lee, \UTDSP benchmark suite,"

http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/

UTDSP.html, 1997.


