DAC: Dedup-Assisted Compression Scheme
for Improving Lifetime of NAND Storage Systems

Seoul National University and "Inha University
{jspark, jihong}@davinci.snu.ac kr, fsungjin.lee@inha.ac.kr

Abstract—Thanks to an aggressive scaling of semiconductor
devices, the capacity of NAND flash-based solid-state-drives
(SSDs) has increased greatly. However, this benefit comes at the
expense of a serious degradation of NAND device’s lifetime. In
order to improve the lifetime of flash-based SSDs, various data
reduction techniques, such as deduplication, lossless compression,
and delta compression, are rapidly adopted to SSDs. Although
each technique has been extensively studied, efficiently combining
these techniques in a synergistic fashion was not thoroughly
investigated. In this paper, we propose a novel dedup-assisted
compression (DAC) scheme that integrates existing data reduction
techniques so that potential benefits of individual ones can be
maximized while overcoming their inherent limitations. By doing
so, DAC greatly reduces the amount of write traffic sent to
SSDs. DAC also requires negligible resources by utilizing existing
hardware modules. Our evaluation results show that the proposed
DAC decreases the amount of written data by up to 30% over a
simple integration of deduplication and lossless compression.

I. INTRODUCTION

The limited lifetime of NAND flash has been considered
a major obstacle for wider use of flash-based solid-state
drives (SSDs). With a continued shrinking of semiconductor
processes and an adoption of multi-leveling technologies, the
capacity of SSDs has been increased greatly. However, the
lifetime of SSDs, which is decided by the maximum number
of program and erase (P/E) cycles of NAND flash memory
cells, has been significantly reduced. For example, SLC NAND
manufactured at 5x-nm has 100K P/E cycles, but it drops to
1K P/E cycles with TLC (Triple-Level Cell) NAND at 2x-
nm. For recent 3D TLC NAND flash, its P/E cycles are much
larger than 2D TLC NAND flash. However, as it scales down,
the P/E cycles are expected to get smaller as well.

Since increasing the number of P/E cycles itself is known
to be difficult without the fundamental changes of current
semiconductor technologies (e.g., new materials), many re-
searchers have focused on developing software/controller-level
solutions that can improve the lifetime of SSDs without
changing underlying devices. One of popular such solutions
is based on a data reduction approach where the amount of
data physically written to flash is intelligently reduced. With
less amount of written data, SSD lifetimes can be improved
by experiencing smaller P/E cycles for a given write traffic.
Data deduplication [1], lossless compression [2], and delta
compression [3] belong to this solution.

Individual techniques mentioned above exploit different
properties of incoming data, so their effects on write traffic
reduction are different depending on characteristics of work-
loads. Data deduplication is effective only when data has high

This research was supported by the National Research Foundation of Korea (NRF)
grant funded by the Ministry of Science, ICT and Future Planning (MSIP) (NRF-
2015M3C4A7065645). The ICT at Seoul National University provided research facilities
for this study. (Corresponding author: Jihong Kim)

978-3-9815370-8-6/17/$31.00 ©2017 IEEE

value locality — that is, exactly the same values are frequently
written to flash. It fails even if there is a single bit difference
between the incoming data and reference data (which is previ-
ously written in flash). Lossless compression is not dependent
upon value locality, but it works well when incoming data has
low entropy. Delta compression compares modified data with
original one and writes only differences to flash. Although
delta compression is not affected by value locality and data
entropy, it can achieve a high compression ratio only when
slightly modified data is frequently overwritten.

Since the effectiveness of each technique highly depends
on input data, combining multiple data reduction techniques
has received a lot of attention in order to achieve high
data reduction efficiency over a wide range of data [4]. A
simple example is a combination of data deduplication and
lossless compression. It first performs deduplication to prevent
duplicate data from being written if the same values were
already stored. When the deduplication step fails, it applies
lossless compression as the second reduction technique. Al-
though this combined technique works better than ones based
on a single reduction scheme, this naive combination cannot
resolve the inherent limitations of existing techniques, losing
some significant opportunities to further reduce incoming write
traffic. For example, it does not effectively handle incoming
data that has low value locality and high entropy where both
deduplication and lossless compression work poorly.

In this paper, we propose a novel integrated data reduction
technique, called dedup-assisted compression (DAC). As its
name implies, DAC is based on deduplication and lossless
compression, but its approach is totally different from their
naive combination. DAC aims at bridging a big gap between
deduplication and lossless compression. Unlike deduplication
that only considers exactly matched values among blocks and
lossless compression that eliminates exactly matched/repeated
bit patterns within a block, DAC takes into account data
similarity across entire storage space. This enables us to handle
a wider spectrum of input workloads, where neither of the
individual techniques can effectively deal with.

By exploiting a hash function of a deduplication engine in a
finer-grained fashion, DAC locates the most similar pages, not
exactly same pages only, in order to overcome the limitation of
deduplication. Once the similar page is chosen as a reference
for a write request, DAC performs XORing between the re-
quested page and reference page, and resulting data is written
to flash after being compressed by a lossless compression
engine. Since XORed data of similar pages has extremely
low entropy, DAC achieves a much higher compression ratio
than merely applying lossless compression. One may think
that DAC is similar to delta compression, but this is not the
case. Unlike delta compression that takes into account only

1249

é Host I/0 requests ?

DAC-FTL

DAC H/W Module (DHM)

-Requested dat
l Fingerprint store l I Strong Hash Engine l
(Mapping Table) Sub-p [Delta Module XOR) |
fingerprints
l Reference Buffer l Compressor]
l Write Buffer l Compressed dat Decompressor]
ﬁ Program, read and erasure
(NAND Flash Memory)

Fig. 1: An organizational overview of our target SSDs.

one original page as a reference, DAC searches for the most
similar one in the entire storage, thereby achieving a much
better data reduction ratio.

In order to evaluate the effectiveness of the proposed DAC,
we develop a new FTL for DAC, which is called DAC-FTL,
in a flash emulation environment [6]. We have evaluated our
DAC-FTL using various real-world traces, and our experi-
mental results show that DAC-FTL can reduce the amount of
written requests up to about 30% over the naive combination of
deduplication and lossless compression. Additional resources
added to an existing flash controller are negligible.

The rest of this paper is organized as follows. In Section II,
we explain an architecture of our target SSD with the DAC
scheme. Section III details the dedup-assisted compression
algorithm, and in Section IV, we explain FTL design issues for
DAC. Section V shows our experimental results, and Section
VI concludes with a summary.

II. OVERALL ARCHITECTURE OF TARGET SSDs

Fig. 1 depicts an overall architecture of our baseline SSD
with the DAC scheme. Similar to recent high-end SSDs em-
ploying deduplication and compression, our baseline SSD has
a specialized hardware controller, called DAC hardware mod-
ule (DHM), which is composed of two sub-modules, a strong
hash function accelerator and a compression/decompression
accelerator. A simple XOR logic is only a new one that is
added to the hardware controller. In spite of architectural
similarity, DHM works differently from the existing SSD
controller in that it is designed to find similar references and
to lower data entropy for better compression (see Section III).

A DAC-aware FTL (DAC-FTL) is a new FTL design for
DAC. It handles read and write requests from the host as
usual FTLs, but its primary goal is to reduce write traffic by
utilizing DHM. DAC-FTL maintains a fingerprint store for
efficient search of similar data, in addition to an enhanced
mapping table. Two buffers, reference and write buffers, are
required for fast read operations and for preventing internal
fragmentation, respectively (see Section IV).

III. DAC: DEDUP-ASSISTED COMPRESSION

In this section, we describe the mechanism of the proposed
dedup-assisted compression algorithm, particularly focusing
on its two unique features, (i) reference search and (ii)
compression with a reference.

A. Reference Data Search

Existing deduplication techniques aim at finding reference
data that are exactly matched to requested data. To this end,
a strong hash algorithm is widely used to generate a unique
fingerprint for a specific bit pattern with an extremely low

1250

0x44 0x41 0x51 0x45 Reguested page

Di{férences}

Resulting compressed page

0000---00000f{00---00]| XmatchPRO

Reference page (addr: 0x100)

0x44 0x41 0x74 0x45

1st Hash 2nd Hash 3rd Hash 4th Hash PaLe Addr
0x44 0x2F 0x31 0x7E 0x02F 50%
0x44 0x41 0x74 0x45 0x100 75%
0x: Ox5E 0x3C Ox7A 0x012 25%
0x45 0x0D 0x45 0x6D 0x13B 0%

Fingerprint store

Fig. 2: The proposed dedup-assisted compression mechanism.

collision rate. One important property of the strong hash
algorithm is that it creates very different fingerprints with a
long distance if bit patterns are similar. This is a desirable
characteristic for deduplication and security applications, but
it is undesirable for DAC because our goal is to find a similar
reference. That is, a fingerprint from a strong hash engine is
not a feasible metric to decide similarity among candidates.

There is another category of hash functions like locality-
sensitive hashing that creates fingerprints with a short distance
if bit patterns of data are similar. Using such hash functions is
beyond the scope of this study because we want to maximally
reuse existing hardware modules with minimal changes at
the controller level, so as to provide good compatibility
with existing SSD controllers. However, the adoption or the
development of new hash algorithms suitable for DAC would
be interesting future work.

Instead of using or developing new hash functions, DAC
makes use of existing strong hash functions for similarity
detection. DAC splits a flash page into several sub-pages. For
example, if a page size and a sub-page size are assumed to
be 16 KB and 4 KB, respectively, there are four sub-pages
per page. Using a strong hash function, it then calculates
fingerprints of all the sub-pages belonging to a requested page.
To find a similar reference, DAC compares four fingerprints
with those in a fingerprint store which keeps fingerprints of all
the candidates. If there is a candidate page whose fingerprints
are all matched, its content is identical to the requested one,
showing the best similarity. If nothing is matched, it means
that there are no similar references. As a result, based on the
number of fingerprints matched, DAC estimates the degree of
similarity. As expected, among all the candidates, the most
similar one is selected as a reference.

Fig. 2 shows an example of how DAC finds a similar refer-
ence. The sub-page fingerprints of a requested page are 0x44,
0x41, 0x51, and 0x45, respectively. Using those values,
DAC searches for the most similar one in the fingerprint store.
The page 0x100 is selected as a reference page because it has
the largest number of matched sub-pages.

The fingerprint store contains a large number of candidates,
so searching for a similar reference by comparing fingerprints
would take a very long time. This issue has been intensively in-
vestigated by previous deduplication studies, and they showed
that reference search can be quickly completed in a constant
time. Only the difference between conventional deduplication
and DAC is that DAC requires more than one fingerprint
comparison. However, the impact of additional fingerprints
search on performance is actually negligible due to long I/O
latencies of NAND flash.

2017 Design, Automation and Test in Europe (DATE)

B. Data Compression with a Reference

Once a similar reference is found, DAC conducts XORing
between a reference page and a requested page. This can
be done quickly by using hardware-based XOR logics. As
depicted in Fig. 2, the reference and the requested pages
are very similar, so resulting data mostly has ‘0’, exhibiting
extremely low data entropy. Only the exception is a narrow
range of region where different bit patterns from the reference
are observed. For such data which consists of a series of
‘0’ values, even a simple lossless compression algorithm
exploiting run-length encoding can achieve an extremely high
compression ratio.

While any lossless algorithms can be used for DAC, we
select the XmatchPRO algorithm [5] in this study, which takes
advantage of both the run-length and the dictionary-based data
encoding. The run-length encoding feature of XmatchPRO
is effective to compress successive bit patterns. In the case
where similar references are found as shown in Fig. 2, it
converts several kilobytes of data to few bytes. XmatchPRO
also makes use of the dictionary-based encoding, so it achieves
a fairly good compression ratio even for data which has no
similar reference. In our observation, XmatchPRO exhibits
comparable performance as other LZ-variant algorithms for
small size data like 4-16 KB flash pages.

IV. DESIGN OF DAC-AWARE FTL
A. Request Handling in DAC-FTL

DAC-FTL is responsible for handling incoming read and
write requests, performing data compression by communicat-
ing with the DHM controller. Fig. 3 shows request handling
procedures of DAC-FTL. When a write request arrives, DAC-
FTL passes the requested data to DHM to get fingerprints for
four sub-pages using the strong hash accelerator of DHM, as
described in Section III. If there is no reference page, it merely
compresses the requested data without a reference using the
DHM’s XmatchPRO accelerator. If a similar reference is
found, DAC-FTL reads a reference page from a flash array
and then delivers it to DHM. If the reference is compressed,
DHM decompresses it immediately. Note that decompressing
the reference data does not require additional reference reads
because DAC-FTL never allows a page compressed with a
reference to be used as a reference for other pages. It helps us
avoid reading another reference page for the current reference
page. By XORing the uncompressed reference page and the
requested page, DAC gets the low-entropy data, which is then
compressed by DHM.

The size of the compressed data is usually smaller than
that of a flash page, so writing it to flash directly causes a
fragmentation problem, wasting valuable flash space. For this
reason, DAC-FTL temporally keeps the compressed data on
a write buffer whose capacity is the same as a flash page.
When the write buffer becomes full, DAC-FTL flushes the
buffered data to flash at once. It would be possible that the
compressed data becomes larger than its original size (e.g., if
its data entropy is so high with no reference page). In that
case, DAC-FTL writes the original (i.e., uncompressed) data
to flash directly.

In DAC-FTL, multiple logical pages are packed together
to a single physical page. Therefore, a conventional mapping

2017 Design, Automation and Test in Europe (DATE)

Read & decompress
compressed data

Write request

Calculate footprints
& reference search

Reference exists?

Read & decompress
reference data
No
| Update footprint store | | XOR req. and ref. data |

XOR read and ref. data
Put in write buffer Return original data

Fig. 3: Request handling procedures of DAC-FTL.

Yes

Read & decompress
reference data

table that maps one logical page to one physical page, i.e.,
one-to-one mapping, does not work with DAC-FTL. Instead,
many-to-one mapping where multiple logical pages point to a
physical page is required. Each entry of the mapping table may
need to have a physical page number for a logical page, the
offset of the logical page on the physical page and the length of
compressed data. Maintaining this information in the mapping
table requires a large DRAM space. Thus, DAC-FTL keeps
all the information about logical pages at the beginning of a
physical page where they are stored. This header information
is automatically fetched while reading a compressed page, so
additional read operations for headers are not necessary.

Updating the fingerprint store is the final step of a write
process. DAC-FTL adds the fingerprints of the requested data
to the fingerprint store only when it is compressed without a
reference. This is a reasonable choice for the following two
reasons; (1) if the requested data has no reference, it means
that the contents of that data is unique and similar data was not
written before; (2) as we briefly mentioned before, it avoids
us to read another reference page when it is selected as a
reference page for incoming data in the future.

For a read request, DAC-FTL first reads a physical page
from the flash array. If the read data is not compressed, it
returns to the host immediately (not shown in Fig. 3). If the
data is compressed without a reference, DAC-FTL performs
decompression using DHM and delivers uncompressed data
to the host. Finally, if the data are compressed with reference
data, DAC-FTL reads a reference from flash and decompresses
it. Then, the uncompressed requested is XORed with the
decompressed reference. The resulting data is sent to the host.

B. Overhead Mitigation in DAC-FTL

DAC-FTL may require a large amount of memory for the
fingerprint store. Strong hash functions commonly employed
for data deduplication generates tens of bytes hash values per
page (e.g., 16 bytes for MDS5). If we assume to maintain all
the fingerprints for 4 KB pages in 512 GB flash storage, the
memory requirement is 2 GB only for fingerprints. Moreover,
since DAC-FTL should maintain four fingerprints for each
page, the amount of memory for the fingerprint store increases
to 8 GB, which is infeasibly large.

DAC-FTL takes two approaches to reduce the memory
requirement. Firstly, DAC-FTL uses the first 1/4 of 16 bytes
fingerprints from MDS5. It may result in more hash collisions,
increasing a probability that different data could have the
same fingerprint. However, data losses never occur because
DAC does not perform data deduplication, always conducting
lossless compression even when there is a reference page with
all the matched fingerprints. It may decrease the potential

1251

@D DAC @ DACun1inited

0O Comp

@ Dedup+Comp

0.8

0.6

0.4

Normalized
Page-Writes

0.2

Average

Fig. 4: Comparisons of normalized page-writes for different
configurations of data reduction techniques.

benefit of DAC by storing redundant data which can be
skipped with deduplication. However, its impact on overall
write traffic reduction is negligible since every 4 KB page
can be compressed to only 24 Bytes (about 0.5% of the
original size) by DAC if it has a reference page whose data
is exactly the same as the requested data. In order to further
reduce the memory overhead, secondly, DAC-FTL maintains
only a limited number of fingerprints in DRAM and manages
them in an LRU fashion. This decision is made based on
our observation that references to fingerprints have a very
skewed distribution with high temporal locality; less than 5%
of written pages are being used as reference pages for more
than 80% of requested pages. Consequently, its effect on a
compression rate is negligible.

Unlike data deduplication and lossless compression, DAC-
FTL requires to read reference pages for compression and
decompression of the requested page. Those additional reads
could badly affect overall I/O performance, especially for
read requests from host; DAC-FTL requires two additional
reference page reads to service a single page request, which
doubles read latencies. To mitigate read overheads, DAC-FTL
employs a read buffer whose size is 32 MB that caches popular
references. Since reference data has high temporal locality
mentioned before, many page reads for reference data can be
served from a small read buffer.

V. EVALUATIONS

For our evaluation, we implemented DAC-FTL on Flash-
Bench [6], which is a storage emulation environment for
flash-based SSDs. The SSD emulator was 512 GB with eight
channels with eight ways, and its page size was 4 KB and
the number of pages per block was 128. Hardware modules
for a strong hash function (MD5) and lossless compression
(XmathPRO) were emulated by software in FlashBench.

In order to evaluate the effectiveness of DAC, we used four
block I/O traces collected from a high-end PC in various
scenarios. All the traces included actual data as well. PC
recorded I/O activities in general PC usages (e.g., document-
ing, installing programs, etc.), and SYNTH was collected from
hardware synthesizing procedures. WEB and IOT captured I/O
activities while browsing World-Wide-Web and storing data
generated from IOT sensor devices, respectively.

We compared five different SSD configurations with differ-
ent data reduction techniques. For Dedup and Comp, the FTL
performed either deduplication or lossless compression, re-
spectively. In Dedup+Comp, deduplication was first performed
and lossless compression was applied if deduplication failed.
DAC compressed requested data as described in Section IV.
The size of the fingerprint store was set to keep 0.5% of all
the fingerprints. For example, the fingerprint store manages

1252

=}

_—)
-

5806 PC -WEB
Se —O\o—o\
5%
50
S g4 -
.EQ. D\D\

>
s ~ 5
]

5 @

£3

]

<
23

8 16 32
Size of the Read Buffer [MByte]

Fig. 5: Comparisons of normalized additional unbuffered page-
reads for varying size of read buffer.

only 5K fingerprints in an LRU fashion for a trace with
IM fingerprints. DACyn1initea Was identical to DAC except its
fingerprint store was unlimited.

Fig. 4 shows the amount of written pages for each trace
under five different configurations. Fig. 4 is normalized to
Dedup. In terms of a data reduction ratio, DAC outperforms the
other SSD configurations for every trace. Even compared with
Dedup+Comp that employs both deduplication and lossless
compression, DAC reduces write traffic by up to 30% and by
15% on average. This result clearly shows that DAC finds sim-
ilar data patterns more efficiently than the naive combination
of deduplication and lossless compression, and prevents them
from being written to SSDs.

DACuniimitea Shows better performance than DAC, further
reducing the amount of written data by lower than 2% on
average. However, this benefit is not so attractive, considering
its high memory consumption. DAC only requires 0.5% of that
DACun1imitea requires for the fingerprint store, but exhibits
similar write traffic reductions, achieving excellent lifetime
improvement as well.

We finally evaluate the effect of a read buffer on read
performance. Fig. 5 shows the number of additional reads
for reference pages with different buffer sizes ranging from
4 MB to 64 MB. This graph is normalized by that of DAC
with no read buffer. As shown in Fig. 5, the use of a read
buffer is effective in reducing reference reads; only with a 64-
MB reference buffer, extra reads are reduced by more than
60% (for PC) and 90% (for WEB), respectively.

VI. CONCLUSIONS

In this study, we proposed a new dedup-assisted compres-
sion scheme which significantly enhanced the lifetime of SSDs
by effectively integrating individual data reduction techniques.
Our proposed scheme maximally reduced the write traffic
to SSDs by utilizing deduplication and lossless compression
engines with few additional hardware and memory resources.
Our experimental results showed that the proposed scheme
achieved up to 30% higher data reduction ratio even over a
combination of existing data reduction techniques.

REFERENCES

[1]1 E Chen et al. CAFTL: A Context-Aware Flash Translation Layer Enhancing the
Lifespan of Flash Memory based Solid State Drives. In Proc. USENIX Conf. File
and Storage Technologies., 2011.

[2] S. Lee et al. Improving Performance and Lifetime of Solid-State Drives Us-
ing Hardware-Accelerated Compression. In IEEE Trans. Consum. Electron.,
57(4):1732-1739, 2011.

[3] G. Wu et al. Delta-FTL: Improving SSD Lifetime via Exploiting Content Locality.
In Proc. ACM European Conf. Comput. Sys., 2012.

[4] S. Lee et al. An Integrated Approach for Managing the Lifetime of Flash-Based
SSDs. In Proc. Design, Automation and Test in Europe., 2013.

[5] J.L.Nunez et al. The X-MatchPRO 100 Mbytes/second FPGA-Based Lossless Data
Compressor. In Proc. Design, Automation and Test in Europe., 2000.

[6] S. Lee et al. FlashBench: A Workbench for a Rapid Development of Flash-Based
Storage Devices. In Proc. Int. Symp. Rapid Sys. Prototyping., 2012.

2017 Design, Automation and Test in Europe (DATE)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

