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ABSTRACT
We propose a new system-level solution that improves both
the performance and lifetime of NAND storage systems by
exploiting the performance asymmetry of NAND devices. At
the device level, we propose a new program sequence, called
relaxed program sequence (RPS), which allows more flexible
page allocations in a block without compromising NAND
reliability. By combining RPS with per-block parity pages,
we can improve the write bandwidth and eliminate expensive
paired page backup operations. Experimental results show
that the proposed technique can increase IOPS by up to 56%
and reduce the number of block erasures by up to 30% over
an existing RPS-oblivious FTL.

1. INTRODUCTION
A multi-leveling technique, which allows a single NAND

memory cell to store multiple bits, has been widely used
for recent NAND flash memory as a key enabling technique
for rapidly decreasing the cost-per-bit of single-level cell
(SLC) NAND flash memory. Although the multi-leveling
technique is effective in increasing the capacity of a NAND
device, it also negatively affects the performance and lifetime
of NAND storage systems because of a fine-grained charge
placement and sensing mechanism used in the multi-leveling
technique.

Figure 1 illustrates a typical program scheme for 2-bit
multi-level cell (MLC) NAND devices under the fine-grained
charge placement and sensing mechanism. (We use 2-bit
MLC NAND devices as examples when specific multi-level
NAND devices are needed, but our proposed technique can
be applicable for other NAND devices such as triple-level cell
(TLC) NAND devices [1] with a similar program scheme.)
As shown in Figure 1, when the first bit (i.e., the least sig-
nificant bit (LSB)) is programmed, the NAND flash con-
troller quickly forms a threshold voltage (Vth) distribution
because it is required to form only two Vth distributions
which are separated by a large voltage margin. On the
other hand, when the second bit (i.e., the most significant
bit (MSB)) is programmed, the NAND flash controller takes
more times because it needs to represent one of four Vth dis-
tributions within the same Vth window in a finer-grained
fashion. Therefore, when an MSB page is programmed, a
NAND storage system experiences a significant latency in-
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Figure 1: An illustration of the program scheme for 2-bit
MLC devices.

crease over when an LSB page is programmed. For example,
in recent 2X-nm MLC NAND devices, the program latency
of an MSB page is about four times longer than that of an
LSB page (i.e., 2,000 μs vs. 500 μs) [2].

The performance asymmetry between the LSB page and
MSB page at the NAND device level can be further am-
plified at the storage controller level. When an MSB page
is written, its paired LSB page which shares memory cells
with the MSB page must be saved to a different NAND page
in order to ensure the data durability. This is because the
MSB-page program is intrinsically a destructive process. As
shown in Figure 1, during the MSB-page program, the LSB-
programmed Vth states are gradually rearranged so that the
stored LSB data are temporarily destructed. Without a
paired LSB-page backup, if a sudden power-off occurs dur-
ing an MSB page program, the valid data of the paired LSB
page previously stored may get lost because there is no way
of retrieving the LSB-page data [3]. Since a paired LSB-
page backup operation requires a page copy operation, the
program latency of an MSB page can be further increased.
In 2X-nm MLC NAND devices, for example, the effective
program latency of an MSB page can be five times longer
than that of an LSB page. Furthermore, since extra page
writes are required for paired LSB-page backup operations,
the lifetime of MLC NAND devices can be deteriorated as
well; three page writes are necessary for storing two pages.

Although some existing studies [4, 5, 6] attempted to al-
leviate the performance and lifetime degradation of MLC
NAND storage systems by exploiting the performance asym-
metry of MLC NAND pages, an amount of improvement by
these techniques is rather limited because of the underly-
ing page program order constraint within an MLC NAND
block. For example, a common program sequence (called as
fixed program sequence (FPS)) specifies a linear page pro-
gram order for the pages in the same block. Because of this
strict program order, an upper management layer such as
a flash translation layer (FTL) has little room to exploit
the underlying device heterogeneity between different page
types, thus limiting the effectiveness of the existing tech-
niques. For example, when burst writes are requested in
a short time interval, more LSB-page writes would be pre-
ferred for satisfying a high peak performance requirement.



On the other hand, when write requests come in a sporadic
fashion, slow MSB-page writes may be sufficient. However,
such flexible page selections within the same block are not
possible under the FPS scheme.

In this paper, we present a new system-level solution that
improves both the performance and lifetime of MLC NAND
storage systems by fully exploiting the performance asym-
metry of MLC NAND devices. Our key insight is that the
FPS scheme is an over-specification which unnecessarily re-
stricts orderings between LSB pages and MSB pages. We
propose a new device-level program sequence, called relaxed
program sequence (RPS), which removes an unnecessary
program constraint of the existing program sequence, thus
allowing LSB-page writes and MSB-page writes to be mixed
in a more flexible fashion. From experimental evaluations
using 2X-nm MLC NAND devices, we validated that our
proposed RPS scheme does not compromise the NAND re-
liability requirement over the existing FPS scheme.

Under the proposed RPS scheme, since an upper manage-
ment layer can choose the page type in a flexible fashion,
new optimizations are possible at the FTL level. We pro-
pose two such optimizations in this paper, a write bandwidth
optimization technique for write-intensive workloads and an
overhead minimization technique for paired page backups.

In order to evaluate the effectiveness of the proposed opti-
mization techniques, we have developed an RPS-aware FTL,
called flexFTL, which we have implemented as a host-level
FTL for a custom NAND flash board [7]. In flexFTL,
NAND pages are programmed under the RPS scheme, not
the FPS scheme. Our experimental results show that sig-
nificant gains are possible with flexFTL, in terms of both
the performance and lifetime over an existing FTL. By ex-
ploiting the performance asymmetry, flexFTL can increase
IOPS (Input/Out-put Operations Per Second) by up to 56%
over the baseline FTL (which is performance asymmetry-
oblivious). Since flexFTL avoids most of paired LSB-page
backup overhead, it also significantly improved the lifetime
of an MLC NAND storage system. Our evaluation results
show that the number of block erasures is reduced by up to
30% over the baseline FTL.

The rest of the paper is organized as follows. The pro-
posed RPS scheme is described in Section 2. In Section 3,
we present the proposed RPS-aware FTL, flexFTL. Exper-
imental results follow in Section 4, and related work is sum-
marized in Section 5. Section 6 concludes with a summary
and future work.

2. RPS: RELAXED PROGRAM SEQUENCE

2.1 Fixed Program Sequence Schemes
Most MLC NAND devices require that pages in the same

block are written following a fixed program order specified
by NAND device manufacturers. The main goal of a pro-
gram sequence scheme is to minimize the cell-to-cell inter-
ference which is the side effect of NAND program operations
so that the operation margin in the Vth window can be se-
cured [8]. Since the NAND operation margin gets reduced
with shrinking semiconductor processes, minimizing the neg-
ative impact of the cell-to-cell interference has been one of
the most critical technical issues at the device level.

The cell-to-cell interference is a phenomenon that a pro-
grammed page is additionally programmed by program op-
erations to its immediately neighboring pages. When this
interference is strong, the Vth states of the cells in the pro-
grammed page can be shifted to the right, thus causing un-
expected changes in the stored data. Figure 2(a) illustrates
the worst-case example of the cell-to-cell interference prob-
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Figure 2: The FPS scheme for minimizing the cell-to-cell
interference problem in MLC NAND devices.

lem when MLC pages in a block can be written without any
restriction on the page program order. (We denote the k-th
word line in a block by WL(k), and the MSB page and LSB
page of WL(k) by MSB(k) and LSB(k), respectively.) For
WL(k) whose LSB page and MSB page were all written, the
cell-to-cell interference to WL(k) can be maximized when
its four neighboring pages, LSB(k-1), MSB(k-1), LSB(k+1),
and MSB(k+1) are successively written. In such a case, the
original Vth state may be shifted to the far right (e.g., 4
in Figure 2(a)) so that its Vth state can be misinterpreted,
thus losing the original data stored in the cell.

In order to minimize the cell-to-cell interference problem,
the FPS scheme was proposed. Since the total sum of the
cell-to-cell interference on WL(k) is directly proportional
to the number of aggressor program operations (i.e., pro-
gram operations performed for WL(k-1) and WL(k+1) af-
ter MSB(k) is written), the existing FPS scheme limits the
number of aggressor program operations by fixing a program
sequence for pages in a block. Figure 2(b) shows a represen-
tative FPS scheme which is commonly employed in recent
MLC NAND devices [8]. As shown in Figure 2(b), only one
aggressor program operation, writing to MSB(k+1), can af-
fect the Vth state of WL(k) after MSB(k) is written.

2.2 Relaxed Program Sequence Schemes
In order to explore the possibility of more flexible page

program orders, we formalized the FPS scheme of Figure 2(b)
using its four constraints on the page program order as sum-
marized below:

• Constraints 1 & 2: Before LSB(k) (or MSB(k)) is written,
LSB(k-1) (or MSB(k-1)) should be written (where k ≥ 1).

• Constraint 3: Before MSB(k) is written, LSB(k+1) should
be written (where k ≥ 0).

• Constraint 4: Before LSB(k) is written, MSB(k-2) should
be written (where k ≥ 2).

Constraints 1 and 2 specify the program orders between
the same type of pages. When pages in a block are written
following these constraints, since LSB(k-1) andMSB(k-1) do
not affect MSB(k), the total sum of the cell-to-cell interfer-
ence for WL(k) can be reduced by 50%. On the other hand,
Constraints 3 and 4 specify the program orders between the
different type of pages. Constraint 3 contributes to reduc-
ing the cell-to-cell interference for MSB(k) by removing the
interference from LSB(k+1). However, Constraint 4 is an
over-specified constraint because writing to WL(k-2) does
not interfere with WL(k). In other words, Constraint 4
can be removed without affecting the cell-to-cell interfer-
ence among MLC NAND pages. When a program sequence
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Figure 4: Reliability comparison results for the FPS scheme
and RPS schemes under the worst-case condition.

scheme satisfies only the first three constrains, Constraints
1, 2, and 3, we call it a relaxed program sequence scheme.
By removing Constraint 4, the RPS scheme allows very

flexible program orders between LSB pages and MSB pages.
For example, as shown in Figure 3(a), all the LSB pages
in a block can be sequentially written before their paired
MSB pages. Figures 3(b) and 3(c) show other examples of
possible program orders where LSB-page writes and MSB-
page writes are flexibly intermixed.

In order to validate that the proposed RPS scheme can
guarantee the same level of the NAND reliability over the
FPS scheme, we compared the overall impact of the cell-to-
cell interference under different schemes. As a main eval-
uation metric, we measured the width WPi of the Vth dis-
tribution for each Vth state because WPi reflects the overall
impact of the cell-to-cell interference quantitatively. Our
verifications were performed with more than 90 blocks out
of three 2X-nmMLC NAND chips. Since there is a high flex-
ibility in selecting the program order with the RPS scheme,
we tested two typical program orders, RPSfull and RPShalf ,
as shown in Figures 3(a) and 3(b), respectively. Figure 4(a)
shows the measured distributions of the total sum of WPi’s
for more than 5,000 pages out of 90 blocks using box plots.
As we expected, WPi’s under RPSfull and RPShalf were
not increased over the FPS scheme, thus showing that the
overall cell-to-cell interference with the RPS scheme was not
higher than that with the FPS scheme. In order to compare
the overall NAND reliability under the RPS scheme over
the FPS scheme, we further measured the bit error rate of
tested pages under the worst-case operating conditions (i.e.,
3K P/E cycles and 1-year retention time) of MLC NAND
devices. As shown in Figure 4(b), the bit error rate for the
RPS scheme was not higher than that for the FPS scheme
under the worst-case operating conditions. Based on our
verification results, we concluded that the proposed RPS
scheme can be employed instead of the existing FPS scheme
without affecting the overall NAND reliability.
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3. FLEXFTL: RPS-AWARE FTL
Since the RPS scheme allows more flexible orderings be-

tween LSB-page writes and MSB-page writes, several new
optimizations are feasible at the FTL level. In flexFTL,
we employ two RPS-enabled optimizations. First, under
the RPS scheme, the write bandwidth can be more easily
increased when such accelerations are necessary. Since fast
LSB-page writes can be consecutively performed without an
intervening slow MSB-page write, the peak write bandwidth
can be improved up to the write bandwidth of SLC NAND
devices. Second, under the RPS scheme, a large number
of LSB pages on the same block can be successively writ-
ten in a row, making the parity-based backup scheme very
efficient (as described in Section 3.3). For a typical MLC
NAND block with 256 pages, only a single parity page write
is required if all the LSB pages of the block are written be-
fore an MSB page of the block, thus significantly reducing
the overhead of paired LSB-page backup operations.

Figure 5 shows an overall organization of flexFTL. FlexFTL
is based on an existing page-level mapping FTL with addi-
tional modules, the page allocator and the block pool man-
ager, for supporting RPS-enabled two optimizations. By
considering the amount of free MSB pages and free LSB
pages under the current I/O workload characteristics, the
page allocator chooses an appropriate page type for a given
request. The block pool manager is in charge of managing
NAND blocks in a performance asymmetry-aware fashion
under the RPS scheme. When the block pool manager de-
tects that the number of available LSB pages is not sufficient
for future write requests, it invokes a background garbage
collector for reclaiming free LSB pages while consuming slow
MSB pages during background garbage collections. Further-
more, in order to balance the amount of free LSB pages and
MSB pages for future requests, the block pool manager pro-
vides the block pool state to the page allocator so as to
control the consumption of each page type.

3.1 Two-Phase Block Management
Since flexFTL is based on the RPS scheme, it has a large

freedom in choosing a page program order; if needed, for ex-
ample, it may even change page program orders during run
time. However, such high flexibility in page program orders
may be too expensive to implement in practice. Therefore,
in flexFTL, we choose a particular page program order
(which is an instance of the RPS scheme), called as two-
phase ordering (2PO). Under the 2PO scheme, all the LSB
pages of a block are first written followed by all the MSB
pages of the block (i.e., RPSfull in Figure 3(a)). When
the 2PO scheme is used, a block can be viewed as cycling
through four distinct states as shown in Figure 6. Starting
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from a free block, it remains as a fast block as long as it
has a free LSB page. Once all the LSB pages of a fast block
are written, it becomes a slow block. When all the MSB
pages of a slow block are written, it becomes a full block. A
garbage collector returns a full block to a free block again.
One of the main functions of the block pool manager is

to keep track of block state changes. The block pool man-
ager maintains a single active fast block per chip in order to
support fast LSB-page writes. Once that active fast block
runs out of LSB pages, it is added to the slow block queue
(SBQueue) while a new active fast block is selected from
the free block pool. The block pool manager also maintains
a single active slow block per chip (from the SBQueue) for
serving MSB-page writes. Since we manage the SBQueue
in a FIFO fashion, the head block of the SBQueue auto-
matically becomes the active slow block. By employing two
active blocks, one from fast blocks and the other from slow
blocks, flexFTL can adapt very flexibly to varying write
workloads without introducing any extra backup operation
as long as the per-block parity page is properly maintained.

3.2 Adaptive Page Allocation
In order to better meet varying write-bandwidth require-

ments, the policy manager (within the page allocator) selects
the most appropriate page type for each page write. As a
general guideline, the policy manager prefers a fast LSB-
page write when two conditions are satisfied: [C1] a high
write bandwidth is required and [C2] an LSB-page write
does not significantly degrade a future write bandwidth. In
order to implement this guideline, the policy manager mon-
itors two parameters, the write buffer utilization u (for C1)
and the quota q for successive LSB-page writes (for C2).

When u is high, the policy manager estimates that a high
write bandwidth is required. On the other hand, when u is
low, it predicts that no high write bandwidth is necessary.

The quota for successive LSB-page writes is used to esti-
mate how a future write bandwidth is affected by the cur-
rent LSB-page write. When q is large, we interpret that
more LSB-page writes would not hurt a future write band-
width. However, when q is small or zero, we understand
that some additional LSB-page writes may hurt a future
write bandwidth. The quota q is initially set to the maxi-
mum size of successive LSB-page writes that a storage sys-
tem may need to support. Since this size may not be known
in advance, we conservatively choose a large value. (In the
current flexFTL, the initial value of q is set to 5% of the
total number of LSB pages.) During run time, each LSB-
page write decrements q by one while each MSB-page write
increments q by one.
Based on the current u and q values, the policy manager

chooses the right page type as follows. For the given two
utilization threshold values uhigh and ulow (where uhigh >
ulow), when u is higher than uhigh, the policy manager
checks if q > 0. If q > 0, the policy manager chooses
an LSB-page write. Otherwise, the policy manager chooses
LSB pages and MSB pages in an alternate fashion. On the

other hand, when u < ulow, the policy manager chooses
an MSB-page write1. When ulow ≤ u ≤ uhigh, the policy
manager alternately selects LSB pages and MSB pages.

The main role of q is to avoid large performance fluctu-
ations in flexFTL which may occur when successive LSB-
page writes are allowed without any restriction. For exam-
ple, if there were no limit on the size of consecutive LSB-page
writes, all the free LSB pages may be consumed by a large
write-intensive workload. Once no free LSB page is avail-
able, a future write request must be serviced with slow MSB
pages only, thus significantly lowering the write bandwidth
achieved. Using q avoids such a dramatic drop in the write
bandwidth by restricting the size of consecutive LSB-page
writes, thus forcing to use MSB pages when q ≤ 0. Once
the quota q is expended, flexFTL works in a similar fash-
ion as an FPS-based FTL by alternating LSB-page writes
and MSB-page writes. If we can maintain q large enough to
service most write requests with high peak write bandwidth
requirements, it is possible to support occasional high peak
write bandwidth with small performance fluctuations.

Since the higher q, the higher write bandwidth, flexFTL
tries to keep q at a high value range by intelligently invok-
ing a background garbage collector during idle times. In
idle times, if the number of free blocks is less than a thresh-
old (e.g., 10% of the total capacity), the block pool man-
ager invokes the background garbage collector in order to
reclaim free LSB pages for future write requests. Once the
background garbage collector is invoked, it chooses a victim
block with the largest number of invalid pages. Since the
background garbage collector is invoked during idle times,
the valid pages of the victim block are copied using MSB
pages, thus increasing q while free LSB pages are reclaimed.
A higher q value after a background garbage collection en-
ables a future write request to be served with fast LSB pages.

3.3 Per-Block Parity Page-Based Backup
FlexFTL efficiently reduces the paired LSB-page backup

overhead by leveraging the 2PO scheme and the parity backup
scheme [6]. Figure 7(a) illustrates how the backup procedure
works in flexFTL. The backup procedure is closely con-
nected to the proposed 2PO scheme. While the LSB pages
of the active fast block are written, using the parity page
buffer, flexFTL computes the accumulated parity values of
all the LSB pages written in the active fast block. For ex-
ample, in Figure 7(a), the parity page buffer contains the
accumulated parity page of three LSB pages written, A, B,
and C. When the last LSB page of the active fast block
is written (i.e., D is written), our backup procedure stores
the accumulated parity page to the reserved backup block2.
When the accumulated parity page is written to the backup
block, we also store the block number (e.g., 87) of the cor-
responding active fast block to the spare area of the parity
page. (This inverse mapping of a backup page to a block is
necessary to safely recover from a sudden power-off.) Once
the pages of a slow block are all written, the saved backup
page is invalidated because we do not need it any more.3

The error recovery procedure takes reverse steps of the
backup procedure as shown in Figure 7(b). When a sud-
den power-off occurs during an MSB-page write (e.g., during
writing the page K to the paired MSB page of the page C
in block #87), flexFTL checks, at the time of a reboot, if
there was any data loss in the active slow block. In order

1
As a corner case, if there is no slow block, an LSB page is selected.

2
In order to reduce the backup overhead, parity pages are written to

the LSB pages of the backup block.
3
The overhead of computing parity values is insignificant over the

NAND program time.
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to check a data loss in the active slow block, we read all
the LSB pages of the active slow block while recomputing
the accumulated parity values on the parity page buffer. If
all the LSB pages were successfully read, we have recom-
puted the parity page for the active slow block and the er-
ror recovery procedure ends without further actions for the
active slow block. If some page lost its data during a sud-
den power-off (e.g., C), we cannot read the page because of
ECC-uncorrectable errors in the page. In this case, we skip
the lost page in computing the accumulated parity value.
However, we continue to read the rest of LSB pages so that
the accumulated parity values can be computed. By com-
paring the saved parity page (in the backup block) and the
recomputed parity values, we can recover the lost page.

The per-block parity page backup scheme may increase
the reboot time after a sudden power-off because the error
recovery procedure must recompute parity values for all the
active slow blocks. Furthermore, partially accumulated par-
ity values for all the active fast blocks should be recomputed
during the reboot time. Although a large number of LSB
pages should be read during the reboot time after a sudden
power-off, the overhead of the error recovery procedure is
relatively insignificant because these extra reads occur dur-
ing the reboot time. For example, when a storage system
has 16 NAND chips and each block has 64 LSB pages, the
extra read overhead is less than 100 ms (i.e., 16 [chips] ×
2 [ blocks

chip
] × 64 [ pages

block
] × 40 [ μs

page
] = 81.92 ms). This read

overhead may be acceptable for most cases because a to-
tal reboot time may take a few seconds to several tens of
seconds.

4. EXPERIMENTAL RESULTS
4.1 Experimental Settings
To evaluate the effectiveness of the proposed flexFTL,

we implemented flexFTL as a host-level FTL for a custom-
built MLC NAND board from BlueDBM [7]. In our ex-
periments, we limited the storage capacity of the BlueDBM
(which can support up to 512 GB of a flash storage system)
to 16 GB for fast evaluations. The 16-GB custom storage
system consists 8 channels and each channel has 4 NAND
chips. Each chip has 512 blocks and each block has 256
4-KB pages.

For our evaluations, we used five distinct I/O workloads,
which were generated from Sysbench [10] and Filebench [11].
As summarized in Table 1, five benchmarks represent dif-
ferent I/O characteristics of various enterprise applications
with different I/O intensiveness and read/write combina-
tions. OLTP and NTRX, which were generated from Sys-
bench, represent intensive DB workloads with little idle times
between successive I/O requests. Webserver, Varmail and

Table 1: I/O characteristics of five benchmark workloads.
OLTP NTRX Webserver Varmail Fileserver

Read:Write 7:3 3:7 4:1 1:1 1:2
I/O intensiveness Very high Very high Moderate High High

Fileserver, on the other hand, were generated from Filebench.
Webserver, a read dominant workload with large idle times,
represents the I/O activities of a simple web server. Varmail
and Fileserver emulate a mail server and a file server, respec-
tively. Both represent write-intensive workloads with a fair
amount of idle times.

We compared our flexFTL with three different FPS-based
FTLs: pageFTL, parityFTL, and rtfFTL. PageFTL is a
baseline page-level mapping FTL based on the FPS scheme
under no sudden power-off assumption. Since pageFTL
does not need paired page backups, it is used to indicate
the maximum performance level of a page-level FTL un-
der the FPS scheme. ParityFTL, which employs an ad-
vanced paired page backup technique of [6], maximally ex-
ploits the parity page backup scheme under the FPS scheme
while taking into account of the inter-channel parallelism of
NAND storage systems. In order to minimize the backup
overhead, parityFTL pre-backups a single parity page for
two LSB pages4. RtfFTL, which is based on the return-to-
fast scheme proposed in [5], performs successive LSB-page
writes for incoming write requests under the FPS scheme, by
maintaining multiple active blocks per chip. A background
garbage collector aggressively consumes paired MSB pages
in idle times so as to sustain successive LSB-page writes.
In our rtfFTL implementation, eight active blocks are used
for each chip, thus supporting the maximum 256 successive
LSB-page writes with 32 chips. In our evaluations, we set
uhigh and ulow to 80% and 10%, respectively. The initial
value of q is set to 5% of total LSB pages. When the num-
ber of free blocks is less than 10% of the total capacity, a
background garbage collector is invoked during storage idle
times in all four FTLs we evaluated.

4.2 Evaluation Results
In order to compare the performance and lifetime gains

of flexFTL over the other FTLs, we measured IOPS val-
ues and block erasure counts for each FTL. Figure 8(a)
shows normalized IOPS values of four different FTLs un-
der each workload. As shown in Figure 8(a), flexFTL
outperforms pageFTL, parityFTL, and rtfFTL by up to
16% (5% on average), 56% (35% on average), and 61%
(29% on average), respectively. In particular, flexFTL
achieves higher IOPS’s even over pageFTL except for Web-
server (which is read dominant). For Varmail and Fileserver,
flexFTL was the most effective in serving long successive
LSB-page writes. On the other hand, since the background
garbage collector cannot increase q due to little idle times in
OLTP and NTRX, flexFTL achieved a similar IOPS level
as pageFTL. However, flexFTL shows large performance
gains over parityFTL and rtfFTL for OLTP and NTRX,
because the paired page-backup overhead affects the effec-
tive performance more significantly under more intensive
workloads.

Figure 8(b) shows that flexFTL also reduces block era-
sures by up to 30% (23% on average) and 32% (28% on
average) over parityFTL and rtfFTL, respectively. This
is mainly because of the per-block parity scheme used in
flexFTL which becomes feasible under the 2PO scheme.
On the other hand, parityFTL and rtfFTL consume more
free pages under the same workload for backup operations.

In order to understand how flexFTL can better meet

4
As shown in Figure 2(b), at most two LSB pages can share a parity

backup page before programming their paired MSB pages.
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(a) Comparisons of normalized IOPS’s for
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(b) Comparisons of normalized block
erasure counts for five I/O workloads.

0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

Write Bandwidth [MB/s]

pageFTL

parityFTL

rtfFTL

flexFTL

Cu
m

ul
at

iv
e 

D
ist

rib
ut

io
n 

Fu
nc

tio
n 

(c) CDF curves of write
bandwidth for Varmail.

Figure 8: Comparisons of the performance and lifetime under different techniques.

high write-bandwidth requirements over the other FTLs, we
ploted the cumulative distribution function (CDF) curves
of write bandwidth for Varmail. As shown in Figure 8(c),
the peak write bandwidth of flexFTL is about 2.13 times
higher than that of rtfFTL (which has the highest peak
write bandwidth among the FTLs compared to flexFTL).
Overall, flexFTL achieves 24% and 17% higher write band-
width, on average, over parityFTL and rtfFTL, respec-
tively.

5. RELATED WORK
There have been several previous studies which exploited

the performance asymmetry of MLC NAND devices for im-
proving the performance of MLC NAND storage systems.
Lee et al. [4] proposed a new flash file system which can,
when required, service write requests using only fast LSB-
page writes. Although this technique may achieve the peak
I/O performance close to SLC flash memory, all the MSB
pages of a block are skipped when fast LSB-page writes are
used, thus wasting half the capacity of the block. FlexFTL,
however, does not sacrifice the NAND capacity when a high
write bandwidth is necessary because the RPS scheme allows
successive LSB-page writes without skipping MSB pages.
Grupp et al. [5] proposed another technique for serving suc-
cessive LSB-page writes by maintaining a pool of free LSB
pages from multiple active blocks. However, the maximum
size of the LSB-page pool is limited by a small number of
active blocks per chip (e.g., 8 successive LSB-page writes
per chip). Furthermore, because of the FPS scheme, once
all the LSB pages in the LSB-page pool are used, the paired
MSB pages (from the LSB-page pool) should be consumed
by background garbage collections so that subsequent LSB-
page writes can be serviced. On the other hand, flexFTL
can support much longer successive LSB-page writes as long
as the quota q is maintained in a positive value range.
In order to reduce the paired page backup overhead, Lee et

al. [6] proposed an adaptive pre-backup scheme which max-
imally exploits the parallelism of NAND devices. Although
this technique can reduce backup operations by up to 50%
with a parity backup page, its potential benefit is severely
limited because the maximum two LSB pages can share a
parity page under the FPS scheme, while flexFTL allows
all the LSB pages (e.g., 128 pages) of a block to share a
single parity page.

6. CONCLUSIONS
We have presented a new system-level solution that effi-

ciently exploits the performance asymmetry on MLC NAND
devices in a holistic fashion. Based on a simple but effective
new RPS scheme proposed at the NAND device level, we de-
scribed several novel NAND flash management techniques
at the FTL level for fully exploiting the device-level per-

formance asymmetry. The 2PO scheme combined with the
per-block parity scheme enables an FTL to achieve higher
write bandwidth while removing most overhead of paired
page backup operations, thus improving both the perfor-
mance and lifetime of MLC NAND storage systems. We also
proposed an adaptive page allocation policy which chooses
appropriate page types under varying write bandwidth re-
quirements. Our experimental results show that flexFTL
can increase the performance by up to 56% while improving
the lifetime by up to 30% over an existing FPS-based FTL.

The current version of flexFTL can be further improved
in several directions. For example, the page allocator is us-
ing a rather simple heuristic for choosing a page type for
given requests. If flexFTL can more accurately estimate
the amount of future writes, for example, by using a page
cache-based future write predictor [9], a background garbage
collector can reclaim free blocks more efficiently so that more
LSB-page writes can be used for future write requests.
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