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Abstract—Many system-level management and optimization
techniques need accurate estimates of power consumption and per-
formance. Earlier research has proposed many high-level/source-
level estimation modeling works, particularly for basic blocks.
However, most of them still need to execute the target software at
least once on a fine-grained simulator or real hardware to extract
required features. This paper proposes a performance/power
prediction framework, called Deep Power Meter (DeepPM), which
estimates them accurately only using the compiled binary. Inspired
by the deep learning techniques in natural language processing,
we convert the program instructions in the form of vectors
and predict the average power and performance of basic blocks
based on a transformer model. In addition, unlike existing works
based on a Long Short-Term Memory (LSTM) model structure,
which only works for basic blocks with a small number of
instructions, DeepPM provides highly accurate results for long
basic blocks, which takes the majority of the execution time
for actual application runs. In our evaluation conducted with
SPEC2006 benchmark suite, we show that DeepPM can provide
accurate prediction for performance and power consumption with
10.2% and 12.3% error, respectively. DeepPM also outperforms
the LSTM-based model by up to 67.2% and 34.9% error for
performance and power, respectively.

Index Terms—Power and performance modeling, system re-
source prediction, transformer

I. INTRODUCTION

For decades, diverse power/performance estimation tech-
niques for processors have been developed for efficient sys-
tem design and online management. For example, the em-
bedded systems should utilize power/performance estimation
techniques to optimize power consumption and meet the power
budget requirements due to the limited battery resource. As
the management efficiency highly relies on the accuracy and
speed of the estimation, i.e., how to precisely predict the
power consumption and execution time at runtime, earlier
research has focused on many modeling techniques that abstract
power/performance behaviors with related system information.

A representative method is to estimate the requirement based
on either source code or compiled binaries [1]-[4]. These
approaches split the target program into specific high-level
software granularity and build estimation models based on
profiled features of the divided elements and analyzed software
flows. Because the basic block is good to analyze the software
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flow, many works use it as granularity and use the basic block-
based model to estimate the entire program characteristics and
optimize performance and energy consumption [5]-[7].

However, these techniques require prior knowledge of the
divided elements, e.g., timing, power, or other relevant events.
Hence, the measurement or profiling on real devices is typically
needed to extract features from them by executing each program
on a fine-grained simulator or real hardware. For example,
to utilize many power/performance models relying on perfor-
mance monitoring counter (PMC) events, users should execute
the target application at least once, either offline or online. Due
to the disadvantage that the extra processes exist, most of these
approaches can be used in limited situations.

This paper proposes a framework called Deep Power Me-
ter (DeepPM), which predicts the performance and power
consumption of basic blocks in a fast and accurate manner
only using compiled binaries. Our technique is inspired by
the machine learning research in natural language processing
(NLP), in particular, based on transformer-based deep learning
techniques. The framework divides a compiled target program
into basic blocks and predicts the power consumption and per-
formance of the basic blocks by using a transformer model [8],
which takes instruction sequences as the inputs. DeepPM does
not need any profiling of running applications at either slow
simulators or real hardware to extract features; we can quickly
and accurately provide information of basic blocks, which have
never been seen before, without physically running it.

We show that the transformer-based neural network structure
provides highly accurate prediction even for long basic blocks
with many instructions, which indeed takes the majority of
actual program executions. It allows us to cover a wide range
of applications, unlike the existing performance model [9]
based on Long Short-Term Memory (LSTM), which only can
predict short basic blocks, e.g., less than 50 instructions. In
addition, our technique estimates the throughput and power
consumption simultaneously using a single transformer model.
We also present how to organize the transformer encoder
stack for accurate prediction by considering the underlying
characteristics of the input data, i.e., instructions in basic
blocks. In the evaluation conducted with various SPEC2006
benchmark suites, we show that DeepPM provides a highly
accurate prediction for performance and power consumption
with 10.2% and 12.3% error, on average, respectively. DeepPM
also outperforms the LSTM-based model [9] by up to 67.2%
and 34.9% error for performance and power, respectively.



II. BACKGROUND AND MOTIVATION
A. Learning-based Performance/Power Estimation

High-level/source-level software modeling has become pop-
ular for fast and accurate estimation of performance and power.
These approaches construct models based on the parts of the
target program divided by specific granularity. As that granular-
ity, they perform either static program analysis of control flow
graph (CFG) or dynamic modeling by performing the programs
to measure target values such as power or core cycle. Because
the basic block is good to analyze the software flow, many
works use it as a granularity. However, building models require
extracting features at least once by executing the target program
on the fine-grained simulator or real hardware. This typically
results in a considerable overhead to the high-level software
model technique, which is infeasible in many situations that
need online management and optimization.

Recent research work proposed machine learning-based tech-
niques to profile them without executing basic blocks [9], [10].
Since their model takes the basic block itself as an input for
the learning model, we can estimate the performance/energy
without the execution of the basic blocks. However, these works
pose several challenges in applying them to real applications.

For example, the work shown in [10] estimates the energy
of the basic block using an Artificial Neural Network (ANN)
model. However, it does not take into account a sequential
relationship between instructions in the basic block. In addition,
since the ANN only works for the inputs with a fixed number of
features, it should modify the number of instructions for every
basic block by inserting NULL or cutting some instructions.
That is, their basic blocks are different from those used in the
actual application. Also, it can not cover a long basic block
with a larger number of instructions than the modeled ones.

Another research [9] proposed an LSTM-based basic block
modeling technique. Since the LSTM can predict a sequence
of input data, it effectively responds to the variable input size,
i.e., the instruction sequence of the basic block. However, a
critical shortcoming of the LSTM model is that it typically
shows poor accuracy for long sequences. Due to this limitation,
they showed their benefits only for short-length basic blocks.

B. Prediction quality vs. Basic block length

To better understand the length of the basic blocks in real-
world applications with the relationship to the accuracy of the
prior technique, we collected all the unique basic blocks of
SPEC2006 benchmark suite [11]. After that, we divided basic
blocks into three groups based on the number of instructions:
0% to 90%, 90% to 95%, and 95% to 99.99%, i.e., 95% to
99.99% is the group of longest basic blocks. We then ran each
benchmark and counted how many times the basic blocks of
each group were executed by using the pin tool [12].

Fig. 1 shows the usage portion of each group. We observe
that even though the long basic blocks are a small part of the
entire basic block set, they are executed frequently during the
application runtime. For example, for the 470.lbm application,
the basic blocks, whose number of instructions is beyond the
95% percentile, appear 58% during the application execution.
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Fig. 1. The percentage of usage per basic block group when executing
the benchmarks in SPEC2006. The groups are divided into three types
(0% to 90%, 90% to 95%, and 95% to 99.99%) based on the number
of instructions in the basic block. It shows that long basic blocks
having many instructions are frequently executed.

To verify the prediction quality of the LSTM model in [9]
for the long basic blocks, we train the model based on our
dataset consisting of the SPEC2006’s basic blocks (we describe
a detailed description of our dataset in the Section IV-A). Fig. 2
summarizes the results for five groups identified by the number
of instructions for each basic block. The results show that the
LSTM model has a higher error for the basic blocks having
more instructions. In particular, for longer basic blocks beyond
50 cycles, it exhibits unacceptable error of more than 45%.
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Fig. 2. Average error for each group. The groups are divided into five
types (below 50, 50 to 100, 100 to 150, 150 to 200, and over 200)
based on the number of instructions in the basic block. The LSTM
model show higher errors for both core cycle and power as the number
of instructions increases.

C. Transformer

The RNN-based models such as LSTM process input tokens
sequentially and update a state vector by combining the current
token with the last state vector, in which the information of
previous tokens is compressed. However, some information of
the input sequence could be lost in the process of compressing
them into one vector. It makes the LSTM model have a lower
accuracy as the sequence becomes longer.

This paper addresses the shortcomings by utilizing the trans-
former neural network structure, which offers much higher



robustness for long sequences. The transformer [8] is developed
to handle sequential input data like words or sentences mainly
in NLP and computer vision (CV) fields. The transformer
model solves the issues in handling the long sequences based on
the attention mechanism. The attention mechanism processes
all tokens at the same time by calculating attention weights
between tokens in successive encoder layers. Therefore, it
directly models relationships between all input tokens, such
as words in a sentence, without loss of information along their
length. In addition, training the transformer model is typically
faster than the LSTM thanks to its high parallelism.

In our cases, the basic blocks usually have a very different
length depending on the number of instructions. The instruc-
tions also have different effects depending on the distance from
each other. Thus, the characteristics of the transformer, which
calculates the relationship between inputs directly, enable us
to consider various influences between inputs regardless of the
long instruction sequences.

III. DEEPPM DESIGN
A. Overview

Fig. 3 shows the overview of the proposed DeepPM. Our
framework consists of three parts at the high level: Basic
Block Generator, Tokenizer, and Transformer Model. For host-
compiled benchmark programs, the Basic Block Generator
collects all the unique basic blocks. After that, Tokenizer
proceeds tokenization for the basic blocks to generate input
tokens in the form of a vector for the Transformer Model.
This process is similar to the one used in NLP for the general
word tokenization. Finally, using the tokenized basic blocks
as inputs, we train the Transformer Model according to the
target environment with measured power and core cycles.
For inference, we can utilize the trained model to predict
average power and core cycle only with the host-compiler target
application, i.e., without running a new application on the target
platform to collect additional runtime information.
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Fig. 3. Design of DeepPM Architecture.

B. Basic Block Generator & Tokenizer

The first two components, Basic Block Generator and To-
kenizer, perform the process of converting the host-compiled
target application, either benchmark applications or the one

that the user wants to estimate through DeepPM, to the input
vector of the Transformer Model. We have developed these two
components in a similar method to the one used in [9].

Basic Block Generator collects all basic blocks of host-
compiled target applications. For example, at Executable and
Linkable Format (ELF), it extracts the executable hexadecimal
machine code of each symbol included in the .text section. After
that, using the dynamorio tool [13], we obtain basic blocks by
dividing the code based on a control transfer instruction of any
kind, whether direct, indirect, conditional, or unconditional.

Tokenizer converts the generated basic blocks into the input
token vectors for the Transformer Model. We regard each
of the opcodes and operands as one token. In addition to
them, we also insert source, destination, constant, memory,
and end tokens, following the generic tokenizing techniques.
The end token is inserted each time after the last token in
each instruction. If the instruction uses a source/destination
operand, the sourceldestination token is inserted before that
operand. If the constant/memory address has been seen, we
use the constant/memory token to replace the value.

C. DeepPM Transformer Model Architecture

Fig. 4 shows a diagram of the DeepPM Transformer Model.
The model architecture consists of the following components:
embedding layer, three types of encoder layers (basic block,
instruction, and opcode), and prediction layer.
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Fig. 4. DeepPM Transformer Model Architecture.

1) Embedding Layer: The embedding layer takes the se-
quence of tokens included in a basic block as the input. It
converts each token into a d,,0q4¢; dimensional vector through
an embedding table. And, the positional encoding injects the
information for the order of sequence in the same way of the
typical transformer. So, the output of the embedding layer is a
tensor consisted of vectorized tokens of the basic block.

2) Encoder Layer: The encoder layer is composed of a
stack of num_layers encoders. It receives the basic block
embedding tensor from the embedding layer as an input and
outputs a newly encoded tensor through encoders.

In our work, we develop a new encoder structure to consider
the basic block characteristics. Fig. 5 compares the standard
encoder with the DeepPM encoder. There are three major dif-
ferences: (i) DeepPM uses a multi-head weighted self-attention



mechanism. (ii) It also does not use layer normalization. (iii)
Instead of using the same encoders in the encoder stack,
DeepPM uses three different encoders according to the target
relationships that each encoder aims to compute.

Multi-head weighted self-attention First, we propose the
multi-head weighted self-attention mechanism, which calcu-
lates attention considering the interval between tokens. In
the fields such as NLP and CV, which usually utilize the
standard transformers, the distance between tokens was not
a significant factor. In contrast, each token of a basic block
performs different roles depending on the surrounding tokens
and their locations. For example, the instructions close to each
other are likely to process the same or related data. Thus, the
influence it receives from other tokens is different depending
on the distance. When using different weights according to the
distance, we obtain better results than the standard model. The
following equation shows our attention:

Weighted_Attention(Q, K, V)
QKToR
e
where Q, K, V are the matrix of queries, keys, values, dj is
a dimensional vector for the key, and o is the element-wise

multiplication. R is the interval weighted ratio matrix which
define as:
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where s is the length of the input sequence.

Removing layer normalization Second, DeepPM does not use
layer normalization. In NLP and CV, which use the vector of
words or images as input or output, the ratio between vectors
is more important than the absolute values of the vector. Thus,
they use layer normalization, which also offers fast learning
speed by adjusting the size of the values while maintaining
the ratio through normalization. However, since the goal of the
DeepPM Transformer is not an output vector normalized itself,
it should predict an output vector with appropriate degrees
of values eventually related to the power and core cycle. In
other words, to predict the target value, such as the average
power or core cycle, the absolute number of the vector itself
is crucial since the prediction of the final value is made
through the degree of that number. Therefore, we remove
layer normalization from our model and only use residual
connections, as shown in Fig. 5b.

Relationship differentiation Lastly, we use three types of
encoders depending on a range of calculating attention values.
The standard encoder originally computes the attention between
all vectors in the input tensor. That is, when the embedding
tensor is the input to the encoder layer, it calculates the
relationship between all tokens. However, in our case, because
the basic block consists of several instructions, the relationship
of the tokens included in the same instruction is more important
than the one belonging to other instructions. To reflect this, we
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Fig. 5. Diagrams of standard encoder of typical transformer model
and DeepPM encoder

designed three different encoders. One of them is a basic block
encoder that calculates the relationship between all tokens of
the basic block, and the other one is an instruction encoder that
calculates the relationship between the tokens included in the
same instruction. Also, considering that the power or core cycle
of the basic block is most affected by the opcode than other
factors, an opcode encoder was constructed for calculating
the relationship between the opcode token vectors that passed
through the previous two encoders. The usage of these three
types of encoders can be seen in Fig. 4.

3) Prediction Layer: The prediction layer predicts a single
value such as average power or core cycle by applying a linear
prediction to the sum of all vectors of an input tensor. The
input tensor is the output tensor of the opcode encoder, which
is the last of the encoder stack in the encoder layer.

IV. EVALUATION
A. Experimental Setup

We evaluate our DeepPM framework on x86-64 Intel Skylake
CPU. For benchmark applications, we collect basic blocks of
29 programs in SPEC2006 [11]. We compiled the benchmarks
under the standard setting of SPEC2006 and extracted the basic
blocks of the compiled binary programs through the Basic
Block Generator of DeepPM explained in III-B. After that,
we collected the core cycle and average power data of each
basic block. To measure the core cycle of the basic block,
we use the basic block core cycle profiling technique of [14].
We also implemented a power measurement tool based on
Intel’s Running Average Power Limit (RAPL) energy sensors.
Since RAPL performs sampling of CPU energy consumption
at every 1 msec [15], it does not offer sufficient granularity
of measurements for a single basic block. Thus, based on the
previously measured core cycle and CPU frequency, we execute
multiple iterations for each basic block to achieve 1 msec, using
a similar method to the one suggested in [16].

For evaluation, we used a random 80% subset of basic blocks
for the training and 20% for the validation (testing). Table I
summarizes the hyperparameters of the models used in the
experiments. Along with the existing LSTM-based model [9]
and proposed DeepPM model, we experiment four different
variants of the DeepPM model to evaluate the effectiveness of
the proposed transformer model structure as follows:

¢ model_A: a transformer model with standard encoders
o model_B: a transformer model with basic block encoders



TABLE 1. Hyperparameters for each model.

Encoders (num_layers)
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Fig. 6. Training Loss and Validation Accuracy of LSTM and DeepPM
Transformer Model for core cycle and average power each.

« model_C: a transformer model with basic block encoders
and instruction encoders

« model_D: a DeepPM model without the weighting in the
attention

B. Accuracy Comparison

We first compare the accuracy of the DeepPM model to
the LSTM-based model [9]. Fig. 6 shows the training and
validation results of the DeepPM model for the extracted basic
blocks. In the results, the DeepPM model provides high-quality
prediction even when assuming each basic block extracted in
the suites contributes equally. The error to estimate the power
consumption is higher than the core cycle estimation due to the
measurement noises and RAPL granularity; DeepPM achieves
on average by 89.8% and 87.3% accuracy for the core cycle and
power consumption, respectively. This quality of prediction is
quite comparable to the state-of-art performance counter based
estimation approach [17].

Compared to the LSTM-based model, DeepPM provides
slightly better results because of the accurate prediction for
long basic blocks, which frequently appear during the actual

(c) Total Dataset (Core Cycle) (d) Total Dataset (Power)

Fig. 7. Average Core Cycle and Power Estimation Error of LSTM
Model and DeepPM Transformer Model for both Validation Dataset
and Total Dataset. DeepPM shows a lower average error for groups
of basic blocks with more instructions.

program execution as discussed in Section II-B. As discussed in
Section II-B, during the actual program execution, the relatively
long basic blocks appear frequently.

C. Prediction quality vs. Basic block length

To better illustrate the practical value of the DeepPM model,
Fig. 7 summarizes the results according to the number of the
instructions. The results also show that DeepPM exhibits a
lower error rate than the LSTM model as the group includes
more long basic blocks. For example, for the basic blocks
whose number of instructions is more than 200, DeepPM
significantly outperforms the LSTM-based model by 67.2%
and 34.9% for the core cycle and power consumption in the
validation, respectively. Thus, we conclude that DeepPM is a
suitable solution to profile actual application runs on the target
systems accurately.

We also observed a specific region with a relatively large
number of instructions that the LSTM-based model makes
incorrect predictions. Fig. 8 shows the measured and predicted
values for the entire dataset. As can be seen from the results
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Fig. 8. Heatmaps of measured and predicted values of LSTM and
Transformer model for core cycle and power each. It can be seen
that LSTM cannot predict when it exceeds a certain range, whereas
DeepPM shows relatively good prediction even at large values.

of Fig. 8a and Fig. 8c, the LSTM can not predict large values
beyond a certain number of instructions. However, DeepPM
achieves high accuracy regardless of the number of instructions.

D. Effects of Proposed Model Learning Techniques

As discussed in Section III-C, we tuned the standard trans-
former/encoder structures to consider the characteristics of in-
structions consisting of the basic blocks. Fig. 9 is a comparative
experiment result for the four different variants along with the
vanilla DeepPM model. The experimental results show that
each of the proposed methods contributes the performance
improvements. For example, the transformer model with the
standard encoders loses the training loss by 3% as compared
to the proposed DeepPM model. It results in 5% lower accuracy
in our evaluation for the core cycle.
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Fig. 9. Comparison of the model varients combined with the proposed
encoders. The results are training losses for the core cycle dataset.

V. CONCLUSION

In this paper, we propose DeepPM, a performance/power pre-
diction framework based on transformer deep learning. Unlike

existing modeling work, our proposed technique does not rely
on any knowledge of the runtime profiles for target applications.
Inspired by the ML techniques for natural language processing,
DeepPM accurately predicts the performance and power only
using the compiled binary by treating the instructions as the
words of the transformer model. In our evaluation, we show that
the DeepPM model provides highly accurate results, 89.8% and
87.3% for the core cycle and power consumption, respectively.
In addition, DeepPM also outperforms the existing LSTM-
based model by 67.2% and 34.9% for the core cycle and power
consumption, respectively, for long basic blocks.
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