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ABSTRACT
We propose P2Cache, an application-directed kernel-level
page cache that allows an application developer to build a
custom kernel-level page cache that matches the I/O char-
acteristics of a target application. P2Cache extends a Linux
kernel page cache by adding new probe points that are used
to support application-programmable kernel page caches
by eBPF programs. Our experimental results show that cus-
tom page caches implemented with our P2Cache achieve up
to 32% performance improvement in data-intensive graph
applications with little effort.

CCS CONCEPTS
• Software and its engineering→ Software creation and
management.

1 INTRODUCTION
Modern data-intensive applications [1–6] require a large
amount of data movements between an SSD and the DRAM
memory of a host system. In order to efficiently manage
such slow data transfers, most operating systems employ
page caches in the host DRAM memory that exploits the
reference locality of I/O accesses. Although OS-level page
caches were widely used for improving the I/O performance
of various applications, their performance improvements are
often disappointing because the cache management policies
of a page cache may not match well with the specific I/O
characteristics of an application. For example, when an ap-
plication repeatedly accesses a large range of I/O addresses
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in a looping pattern, the MRU (Most Recently Used) replace-
ment policy may outperform the commonly used LRU (Least
Recently Used) replacement policy. If an application accesses
the I/O address space randomly, the standard read-ahead
policy used by the page cache may prove ineffective.
In order to mitigate the mismatch problem between the

I/O characteristics (of an application) and the policies (of a
kernel-level page cache), data-intensive applications often
implement their own page caches at the application level
[3–7]. However, supporting a user-level page cache at the
application level presents several practical challenges.

If a user-level page cache is implemented directly without
utilizing a kernel-level page cache (e.g., as in Jaydio [8] or
RocksDB’s Direct-IO [9]), it may not be able to take advan-
tage of certain kernel-supported functions, such as those
for ensuring data protection and data consistency. More-
over, if there are significant changes in either the SSD or the
host memory system, a user-level cache would need to be
re-implemented.
In this paper, we propose an application-directed kernel-

level page cache, P2Cache (Programmable Page Cache), that
allows an application developer to build a custom kernel-level
page cache that matches the I/O characteristics of a target
application. P2Cache aims to leverage the advantages of a
kernel-level cache by enhancing the existing Linux page
cache with four additional probe points. These probe points
enable the integration of user-level customization through
eBPF programs [10] with the Linux kernel-level page cache.
Using a P2Cache-specific API, P2C API, application develop-
ers can create customized kernel-level page caches. At run
time, when application-specific eBPF programs are loaded
into a kernel-level page cache via the proposed probe points,
the default Linux kernel-level page cache is re-configured to
a custom page cache.
To assess the effectiveness of P2Cache, we implemented

it on a Linux server with a high-performance 2-TB NVMe
SSD running kernel version 5.8. We used two open-source
data-intensive graph processing frameworks (Lumos [2] and
GraphWalker [4]) as benchmarks. For each application, we
implemented a custom page cache using the P2C API pro-
posed in this work. Our experimental results show that
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Figure 1: I/O patterns andperformance trends of Lumos
with varying memory sizes.

P2Cache can reduce the average overall execution time of the
benchmark programs by 15% with just a few lines of C code
(using the P2C API).

2 MOTIVATIONS
In this section, we present the limitations of existing caching
strategies. We evaluate three common techniques, OS-level
caching, hint-based OS-level caching, and user-level caching,
under data-intensive applications with different I/O patterns.

2.1 Limitations of OS-level Page Cache
Modern operating systems commonly employ an OS-level
page cache to reduce I/Os between disks and host memory.
It employs an LRU replacement policy combined with read-
ahead algorithms and generally achieves a high hit ratio if
applications have moderate locality [11]. Since the caching
service is performed in the OS kernel, it not only ensures
robust data protection but also provides efficient data sharing
across applications [12–14].

The OS-level page cache, however, often shows disappoint-
ing performance particularly under data-intensive applica-
tions. Existing data-intensive applications deal with huge
amounts of data with highly customized algorithms, which
results in complicated I/O patterns. Unfortunately, owing to
its general-purpose design, the OS-level page cache often
fails to capture unique behaviors of individual applications,
thereby providing sub-optimal performance even if a higher
hit ratio can be achieved. Figure 1(a) plots I/O reference pat-
tern of graph application, Lumos [2], which executes graph
processing algorithm - Pagerank [15]. Since it optimizes the
graph processing engine using specialized data structures
and optimization techniques, generated I/O access patterns
are quite complicated. Lumos maintains multiple files and
scans them simultaneously, sendingmixed I/O patterns to the
disk. Lumos also uses several metadata files and repeatedly
reads them, resulting in highly localized I/O patterns.

We evaluate the performance of the application while de-
creasing its memory sizes (see Figure 1(b)). The performance
is normalized to an optimal case where the memory size is
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Figure 2: I/O patterns and performance trends ofGraph-
Walker with varying memory sizes.

large enough to fully fit the dataset size. After the dataset size
exceeds the system memory, the applications start suffering
from cache thrashing, providing serious performance drops
(see Baseline in Figure 1(b)). This is a common phenome-
non under memory-hungry situations, but the performance
penalty is more severe than our expectation.
Our analysis found that the low performance is due to

ineffective memory management of the OS-level page cache,
which uses LRU and read-ahead policies without considering
input workload patterns. The OS-level page cache prioritizes
evicting the least-recently referenced pages, but these pages
are actually referenced again soon, particularly under loop-
ing I/O patterns.
We have observed that using the MRU policy with small

data-pinning, instead of LRU, results in higher performance,
showing a 25% improvement as shown in MRU+PIN of Fig-
ure 1. However, it is difficult to change an in-kernel cache
replacement policy adapting to input workloads.

As an alternative, some applications (e.g., GridGraph [1] or
SQLite [7]) attempt to better manage cached data by provid-
ing application-level hints to the kernel via fadvise [16] and
madvise [17]. While retaining the same advantages of the
kernel-level cache management – robust data protection and
efficient data sharing, it is able to achieve higher cache hit
ratios by embedding important cache management decisions
(e.g., WILLNEED, SEQUENTIAL, DONTNEED) in applica-
tion codes. However, it also has drawbacks. First, it requires
non-trivial effort in modifying existing application codes.
Second, it is hard to fine control the kernel-level page cache
just by injecting hints. We carefully added hint information
in the code to manage the kernel cache in the MRU manner.
The modified version exhibits higher hit ratios but still shows
much slower performance than using the MRU (see FADV
in Figure 1). This is because, as soon as the application’s
memory usage exceeds the system memory, cache thrashing
begins to occur, leading to performance degradation.
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2.2 Limitations of User-level Page Cache
Instead of relying on the kernel-level page cache and user-
level hints, some data-intensive applications (e.g., Graph-
Walker [4], MyRocks [18]) employ their own caching algo-
rithms, keeping and managing data in the user-level mem-
ory space. Based on detailed knowledge on application’s
behaviors, this approach is able to maximize cache hit ra-
tios, thereby achieving excellent performance. However, it
requires developers to create the caching algorithm from
scratch, and it cannot utilize the kernel’s protection and shar-
ing features, making it more vulnerable to data protection
issues and requiring extra effort to enable data sharing.

Another drawback of the user-level caching is that it suf-
fers from interference by the kernel’s page cache policy. Once
the dataset size exceeds the system memory, the kernel tries
to evict pages assigned to application’s cache memory. It
evicts pages based on LRU without respecting application’s
caching policy. As a result, it often demotes useful ones to
the disk, interfering with application’s caching mechanism.
To evaluate the impact of the kernel on application per-

formance, we conducted experiments using Simrank [19], a
graph application with its own user-level cache. As shown in
Figure 2(a), I/O reference patterns of Simrank are mostly ran-
dom because it caches popular data in the user-level cache.
Thanks to such application-specific management, Graph-
Walker exhibits higher performance than Lumos for the same
dataset (see Figure 2(b)). However, GraphWalker experiences
a higher performance drop than Lumos when it runs out of
memory. As mentioned earlier, this is owing to the kernel’s
intervention that evicts useful pages, violating the applica-
tion’s intention.
In summary, the kernel-level page cache fails to deliver

high performance due to its inability to consider application-
specific I/O patterns. Application-level hints mitigate the
problem, but have limited effectiveness compared to the op-
timal. While the user-level custom cache works efficiently,
it cannot leverage the kernel’s infrastructure and suffers
from performance drop by kernel intervention. To tackle the
issues mentioned above, we propose P2Cache that enables de-
velopers to create a custom kernel-level page cache. P2Cache
leverages eBPF to enable developers to control the detailed
behaviors of the kernel’s page cache with the application’s
high-level knowledge. Since the cache management is en-
tirely performed inside the kernel, it allows us to benefit from
the advantages of kernel-level caching and is not impacted
by kernel’s internal policy.

3 DESIGN OF P2CACHE
3.1 Overview
To support a custom kernel-level page cache with a user-
defined page-cache management policy, it is necessary to
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Figure 3: An operational overview of P2Cache.

safely execute the user policy code within the kernel. For this
purpose, we use the eBPF framework [10] of Linux which
guarantees the safe execution of eBPF programs inside the
Linux kernel. To leverage the benefits of eBPF, the current
page cache code must be expanded to accommodate new
probe points that can be linked to user-level eBPF programs.
To ease the overhead of kernel-level programming at the
user level, a proper API support for customizing kernel-level
page caches is important as well. In order to meet the above
requirements, P2Cache 1) defines new probe points for page
cache customizations inside the Linux kernel and 2) provides
P2CAPI that simplifies the implementation of different cache
management policies.
Figure 3 shows an operational overview of P2Cache. To

create a custom page cache for an application 𝛼 , application-
specific data data𝛼 of the app 𝛼 may be required for develop-
ing a new cache policy. If they are needed, data𝛼 is moved to
the kernel’s protected memory ( 1 ). To avoid unauthorized
accesses to data𝛼 from other applications, a secret password
(passwd𝛼 ) is assigned for each custom page cache. Using
P2C API functions along with the kernel data for the app
𝛼 , an eBPF program is implemented for each probe point
of P2Cache ( 2 ). After loading eBPF programs into their re-
spective probe points ( 3 ), a custom page cache for the app 𝛼
becomes effective by executing the eBPF programs whenever
the kernel’s execution flow reaches those points. Before an
eBPF program is executed, an extended eBPF VM verifies
the program’s authorization to access kernel data owned by
the application 𝛼 as well as application-specific data data𝛼 .
This is achieved by comparing the passwdprobe of the eBPF
program with the passwd𝛼 passed from the corresponding
application.

3.2 Implementation Details
Probe Points for Page Cache. We integrated four new
probe points into P2Cache, as depicted in Figure 3. These
probe points were selected based on experimental validation
results, which showed that their configurations significantly
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Table 1: A summary of functions in P2C API.
Group Function name Description

Configuration Management (CM)

move_data_to_kernel (app_data, passwd_app) Transfer the app_data from user memory to kernel memory
protected by the passwd_app.

bpf_prog_load (program, target_probe, passwd_probe) Load the eBPF program into the target_probe with the
passwd_probe (used to access kernel data.)

bpf_prog_unload (program, target_probe, passwd_probe_ld)
Unload the eBPF program attached to the target_probe if the
passwd_probe_ld matches the current passwd of
passwd_probe.

Policy Implementation (PI)

struct list_head page_list = get_page_list (application_name) Return a page_list owned by the application_name.
struct page/file = get_page_data (page) / get_file_data (page) Return the page/file metadata of the page.

char *ptr = get_app_data (application_name) Get the pointer to the data transferred by the
application_name.

void iterate_page_list_lru/mru (page_list, page) Iterate over the page_list of type page in the LRU/MRU order.
void set_eviction_list (page) Add the page to the eviction list with candidate eviction pages.
void pin_page (page) Lock the page into a page cache.
void create_map (table_name, key, value) Create a hash table named table_name that maps key to value.

char *ptr = get_map_value (table_name, key) Get the pointer to the value corresponding to the key in the
table_name.

impact the I/O performance of data-intensive applications.
The eviction policy probe determines a page-cache eviction
heuristic, while the prefetch policy probe defines a prefetch
technique. Additionally, the pinning policy probe decides
which pages to be pinned in a kernel page cache, and the
swap policy probe is used to identify the pages that will be
selected for swapping.
P2C API. The P2C API consists of two groups of functions,
ones in the configuration management (CM) group and the
others in the policy implementation (PI) group, as summa-
rized in Table 1. The CM functions are used to move appli-
cation data to the kernel memory. Furthermore, the load-
ing/unloading of user-defined eBPF programs to/from the
probe points are supported by the functions in the CM group.

/* Application code */
1. void main() {

...
2.   move_data_to_kernel (file_list_in_even_steps, passwd_app);
3.   move_data_to_kernel (file_list_metadata, passwd_app);
4.  }

/* An eBPF Program for Eviction Policy Probe */
5.  void MRU_prioritize_even_steps(*ctx) {
6.    pg_list= get_page_list (“Lumos”);
7.    iterate_page_list_mru (pg_list, page) {
8.      if (page does not belongs to even iteration steps)
9.    set_eviction_list(page);
10. }
11.  }

/* An eBPF Program for Pinning Policy Probe */
12. void pinning_meta_files_only(*ctx) {
13.   pg = get_page_data(page);
14.   f = get_file_data(page);
15.   if (f is a meta file)
16.      pin_page(pg);
17. }

Figure 4: An example implementation of a custom page
cache for Lumos.

The PI functions are used to access application data trans-
ferred by the CM functions or app-owned kernel data (such
as a page list) for a custom page cache policy. Furthermore,
the PI group functions support the use of a hash table for
efficiently storing and retrieving information needed to im-
plement a tailored page cache policy.
Figure 4 illustrates an example of a custom page cache

implementation using Lumos as a target application. As de-
picted in Figure 1(b), Lumos frequently accesses small meta-
data files and conducts sequential scans on large data files in
a repetitive manner. Notably, certain data files are exclusively
accessed during even iteration steps. Hence, an efficient page
cache for Lumos can be implemented by retaining the small
metadata files in memory and adopting an MRU (Most Re-
cently Used) policy that emphasizes the prioritization of data
files accessed during even iteration steps. Initially, the list of
data files accessed during even iteration steps and metadata
files are transferred to kernel-protected memory (lines 2-3).
At the pinning policy probe, pages associated with metadata
files can be pinned in memory (lines 13-16). At the eviction
policy probe, a customized MRU policy can be employed,
which preferentially evicts pages belonging to data files that
are not accessed during even iteration steps (lines 6-9).
Per-App Kernel Access Isolation. To prevent unautho-
rized eBPF programs from accessing other applications’ data
stored in the kernel, a simple authentication mechanism
is employed in P2Cache. As shown in Figure 3, two pass-
words (such as passwd𝛼 and passwdprobe) are used to ensure
per-application kernel data isolation. When transferring ap-
plication data to the kernel, a corresponding password (e.g.,
passwd𝛼 ) is passed to P2Cache. Similarly, when an eBPF pro-
gram is loaded onto its designated probe point, a matching
password (e.g., passwdprobe) is passed as well. When the eBPF
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Figure 5: Lumos performance comparisons among the
default kernel page cache, simple optimization, and
custom page cache.

program is executed within the eBPF VM, the password au-
thentication mechanism, which is embodied in the PI func-
tions of the P2C API, checks if two passwords match. Only
when they match, the PI functions are executed.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
In order to evaluate the effectiveness of P2Cache, we im-
plemented P2Cache on a Linux server (kernel version 5.8)
with a high-performance 2-TB NVMe SSD. Two open-source
out-of-core graph processing frameworks, Lumos [2] and
GraphWalker [4] were used as benchmark data-intensive
applications. Lumos was evaluated using Pagerank [15] algo-
rithm, and GraphWalker was evaluated using Simrank [19]
algorithm.We employed two real-world graph datasets (Live-
Journal [20] and Twitter [21]) to assess the effectiveness of
custom page cache policies. By utilizing Linux’s cgroups [22],
we carried out evaluations by varying the ratios between
available system memory size and dataset size.

Table 2: A summary of custom page cache implemen-
tations for Lumos and GraphWalker.

Probe Lumos GraphWalker

Eviction
Policy

Evict pages by MRU order,
prioritizing those from data files

not accessed in even iteration steps.
No customization.

Prefetch
Policy

Adjust the read-ahead sizes,
considering memory size to avoid
evicting soon-to-be-used pages.

No customization.

Pinning
Policy

Pin small and frequently used
metadata files. No customization.

Swap
Policy No customization.

Swap user-level pages
belonging to subgraph with

small walk counts.
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Figure 6: GraphWalker performance comparisons be-
tween the default kernel page cache and custom page
cache.

4.2 Evaluations
We implemented custom page caches for two applications
using the proposed P2C API. Table 2 provides a summary of
the custom page cache implementations for two applications.
Lumos Optimizations. Figure 5 compares the performance
efficiency of a custom page cache over the default kernel
page cache (Baseline) and its optimized version with user-
level hints (MRU+PIN) while varying available memory sizes.
All values were normalized to when sufficient memory was
allocated for each dataset. The performance enhancement
of Lumos, utilizing a custom page cache implemented with
P2Cache, results in up to a 32% improvement compared to
Baseline. Additionally, when compared toMRU+PIN, P2Cache
consistently exhibits performance gains of up to 15%. Among
three policy optimizations applied for Lumos, the customized
MRU eviction policy, which differentiates the importance of
accessed files for each iteration, has a distinction from the
basic MRU policy.
GraphWalker Optimizations. Figure 6 compares the per-
formance efficiency of a custom page cache over the default
kernel page cache (Baseline) while varying available mem-
ory sizes. The performance in Figure 6 were normalized to
when sufficient memory was allocated for each dataset. The
performance enhancement of GraphWalker, utilizing a cus-
tom page cache implemented with P2Cache, results in up to
a 14% improvement compared to Baseline even with a swap
policy customization only. Under the default Baseline page
cache, GraphWalker experiences a significant performance
degradation from a large number of page faults as memory
becomes scarce, as useful pages are frequently evicted by
the kernel’s existing swap mechanism. The bottom graphs
in Figure 6 show that the number of page faults increases by
up to 3.2 times when the available memory size is reduced
by 1/3.
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To enhance GraphWalker’s performance using P2Cache,
we adopted an optimization strategy from a user-level page
caching technique [4] employed in GraphWalker. In the orig-
inal GraphWalker’s user-level page cache implementation,
cache blocks with the lowest walk counts are evicted first,
while walk counts are adjusted by the application’s own
optimization algorithm. To replicate this approach, we trans-
ferred the walk-num values for each block to the kernel
after every iteration step and implemented a custom eBPF
program for the swap policy probe, which adheres to the
walk-conscious caching scheme [4] of GraphWalker.

5 CONCLUSIONS
We have presented P2Cache, an application-directed kernel-
level page cache for Linux-based systems. P2Cache enables
application developers to create custom kernel page caches
that can better support applications’ I/O workloads. By ex-
tending the existing kernel page cache with the introduction
of four new probe points, P2Cache leverages all the benefits of
the existing kernel page cache. To facilitate easy programma-
bility of P2Cache, we developed the P2CAPI, which simplifies
the process of developing a safe custom kernel-level page
cache. Our evaluation results demonstrate that P2Cache can
be an effective solution for improving the I/O performance
of data-intensive applications such as graph processing ap-
plications.
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