
PiF: In-Flash Acceleration
for Data-Intensive Applications

Myungjun Chun*
Seoul National University

Jaeyong Lee*
Seoul National University

Sanggu Lee
Seoul National University

Myungsuk Kim
Kyungpook National University

Jihong Kim
Seoul National University

ABSTRACT
To minimize unnecessary data movements from storage to a
host, processing-in-storage (PiS) techniques, which move a
compute unit to storage, have been proposed. In this position
paper, we propose an extreme version of PiS solutions, called
a processing-in-flash (PiF) scheme, that moves computation
inside flash chips where data are physically present. As a key
building block of a PiF solution, we present a novel flash chip
architecture, CoX. Using a prototype PiF SSD based on CoX
chips, we demonstrate that PiF-based SSDs are promising in
accelerating data-intensive applications.

1 INTRODUCTION
As the number of successful use cases based on big data ana-
lytics quickly increases, more complex data-intensive apps
are widely developed. For such complex data-intensive apps,
a very large amount of data is involved. Since real-world data-
intensive apps (e.g., an intelligent query app [1, 2]) should
handle a very large amount of data (e.g., a few terabytes [3]),
a careful design of a memory/storage hierarchy is critical for
these apps. For example, high-performance NVMe SSDs are
commonly used for latency-sensitive apps as their storage
devices because they provide the most effective solution to
meet both the high-performance and large-capacity.

Using a high-performance storage system along with high-
speed DRAMs, however, may not be an efficient solution
for most performance-critical data-intensive apps. In many
such apps, it is very likely that most data moved through
a memory/storage hierarchy are not reused because of the

* The first two authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotStorage’22, June 27-28, 2022, virtual conference
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9399-7/22/06. . . $15.00
https://doi.org/10.1145/3538643.3539742

(a) An overall architecture of an
example PiS SSD.

(b) Changes in processing
time.

Figure 1: A typical organization of a PiS SSD and its
key limitations.

little data locality in these apps. In order to overcome such
limitations of conventional computer systems, processing-in-
storage (PiS) techniques have been extensively investigated
by many research groups [4–11]. In a PiS-based SSD, compu-
tation moves to a storage device so that the overhead of data
movements to a host system can be minimized. Figure 1(a)
illustrates an organizational overview of an example PiS SSD.
Data stored in a flash chip of the PiS SSD first moves to an
internal processing logic (e.g., 𝐹 accelerator). Based on the
processing results on the internal processing logic, qualified
data for subsequent processing are transferred to the host,
thus reducing a significant amount of data movements.

Although PiS techniques can achieve significant improve-
ments over a conventional approach, their applicability is
limited for data-intensive apps. First, a PiS-based SSD still
needs a substantial amount of data movements because an ac-
celerator in the PiS SSD is implemented at the SSD controller
level. All data must be loaded from flash cells to SSD-internal
memory before they are processed. In data-intensive apps,
such internal data movements can incur a significant perfor-
mance overhead with high power consumption.
Second, the acceleration capability of a PiS SSD is not

scalable over the increasing storage capacity because an SSD
controller is highly constrainted by its size, cost, and power
consumption. Figure 1(b) illustrates the key limitations of
the existing PiS approach for supporting data-intensive apps
(See Section 3.3 for experimental settings.). The processing
time of the data-intensive apps was broken into three com-
ponents, 𝑇flash, 𝑇transfer, and 𝑇accel, where 𝑇flash is the total
time spent reading data from flash chips, 𝑇transfer is the to-
tal time spent for moving data to the SSD-internal memory

106

https://doi.org/10.1145/3538643.3539742

HotStorage’22, June 27-28, 2022, virtual conference M. Chun et al.

for processing, and 𝑇accel is the total time taken by an ac-
celerator. As the storage capacity increases, the number of
flash chips will increase, as shown in the x-axis of the graph.
Thanks to increased chip-level parallelism,𝑇flash only slightly
increases as the storage capacity increases. However,𝑇transfer
and 𝑇accel may quickly increase as the number of chips in-
creases.𝑇transfer rapidly increases because the I/O bandwidth
from flash chips to the SSD-internal DRAM is limited. 𝑇accel
can get longer when the acceleration capability cannot keep
up with the increased data.
In order to overcome the limitations of a PiS technique,

we propose a processing-in-flash (PiF) technique, an extreme
version of the PiS approach, that offloads computation inside
a flash chip (i.e., the lowest level of storage hierarchy where
data are physically present). Furthermore, by offloading com-
putation inside the flash chip, we can minimize 𝑇transfer. By
supporting an accelerator function at the chip level, the ac-
celeration capability can be more scalable over the increasing
number of flash chips. A PiF-based SSD, therefore, can be
faster, more power-efficient, and more scalable over a PiS-
based SSD.

Although the PiF approach seems to be promising, it is not
straightforward to move computation into a flash chip. In
this paper, we present the main technical hurdles in realizing
a PiF-based SSD in practice with potential solutions. In order
to demonstrate the effectiveness of the PiF approach, we
present a prototype PiF-based SSD that employs an in-flash
pattern matcher. Our evaluation results show that the PiF-
based SSD is 5.7x faster and 6.6x more power-efficient on
average over the PiS-based SSD.

2 COX DESIGN REQUIREMENTS
The key difference between a PiS SSD and a PiF SSD lies
in how an acceleration function is placed within an SSD.
Figure 2 shows an overall architecture of a PiF SSD. Unlike
a PiS SSD as shown in Figure 1(a), the PiF SSD distributes
its acceleration function among flash chips as well as a SSD
controller. For example, the function 𝐹 , which was acceler-
ated in the PiS SSD, is divided into 𝐹front and 𝐹backend in the
PiF SSD and 𝐹backend is computed inside a flash chip.
2.1 Key Building Block: CoX Flash Chip
In order to build a PiF-based SSD, we propose a PiF-enabled
flash chip that we call a Cell-over-X (CoX) flash chip. The

Figure 2: An overall architecture of an PiF SSD.

(a) A CoP flash chip. (b) A CoX-𝐹 flash chip.
Figure 3: An organizational comparison between an
existing CoP flash chip and a CoX-𝐹 flash chip.
proposed CoX flash chip is based on the state-of-art Cell-over-
Peri (CoP) technique that places peripheral circuits and core
logic under a flash cell array [12]. Figure 3(a) and Figure 3(b)
show an organizational overview of the existing CoP flash
chip and a proposed CoX flash chip, respectively. The key
motivation of designing the CoX flash chip is to place a chip-
level accelerator module (called Xcore) and an ECC module
on the bottom layer of the CoX chip by exploiting the unused
free space of a CoP organization for in-flash processing. To
emphasize an in-flash accelerator for a function 𝐹 , we call
such a CoX chip as CoX-𝐹 .
2.2 Area Constraint
One immediate concern in designing a CoX chip is whether
sufficient free space exists on the bottom layer of the CoX
chip so that Xcore and an ECC module, as well as peripheral
circuit and core logic, can be implemented. In a CoX chip
with the die area 𝐴, (1 − 𝑃/𝐴) × 100% is usable for Xcore
and an ECC module where 𝑃 is the area used for the periph-
eral circuit and core logic (e.g., row decoder/page buffer). In
order to estimate the usable area for Xcore in flash chips, we
investigated the per-module area ratio of modern flash chips.
Figure 4 shows comparison results of six modern flash dies
from two vendors. Flash cell arrays take about 82% of the
die area, while the peripheral/page buffer/row decoder takes
about 18% of the die area. Assuming that the size of flash
cell arrays decides the die size of a CoX chip, about 78% of
the CoX chip area can be used for Xcore and an ECC module.
Since the average area of the six flash dies is 165𝑚𝑚2, the die
size of a CoX chip is about 135𝑚𝑚2. Excluding 30𝑚𝑚2 for
the peripheral/decoder/buffer, about 100𝑚𝑚2 can be used for
Xcore and an ECC module. Unless the complexity of Xcore is
very high, we find that there is sufficient free space for Xcore
and an ECC module on the bottom layer of a CoX chip.

0%
20%
40%
60%
80%
100%

Vender	A
(128Gb)

Vender	A
(256Gb)

Vender	A
(512Gb)

Vender	B
(256Gb)

Vender	B
(512Gb)

Vender	B
(768Gb)

Pe
r‐
m
od
ul
e	
ar
ea
	

ra
ti
o

Flash	cell	array Row	decoder Page	buffer Peripheral

Figure 4: A breakdown of per-module area in various
flash chips.

107

PiF: In-Flash Acceleration for Data-Intensive Applications HotStorage’22, June 27-28, 2022, virtual conference

2.3 Power Constraint
High-performance SSDs are often limited by their maximum
power budget. Since CoX chips may consume more power
than conventional flash chips for in-flash acceleration, the
acceleration capability of a PiF SSD may be limited by their
power budget. Therefore, we require a simple but strong
power constraint on a CoX chip, which can be summarized
as 𝑃read + 𝑃xcore + 𝑃ecc ≤ 𝑃program, where 𝑃read, 𝑃program, 𝑃ecc,
and 𝑃xcore are the power consumption of a read, a program, an
ECC module, and Xcore, respectively. When this constraint
is satisfied, a PiF SSD can be interchangeably used where a
normal SSD can be usable. In a typical 3D TLC NAND flash
memory, about 20 mW can be allocated for operating Xcore
and an in-flash ECC module 1.
2.4 Reliable In-Flash Read Requirement
In a PiF SSD, data stored in flash cells are read and processed
by Xcore before they are restored to their error-free version
by a controller-level ECC module. Therefore, one of the key
requirements of a CoX chip is that in-flash reads should be
reliable without depending on a controller-level ECCmodule.
A straightforward solution may be to implement a controller-
level ECC module inside a CoX chip. Even though it may be
feasible to put a controller-level ECC module in a CoX chip,
from the power consumption perspective, this is a bad design
decision. As the number of CoX chips increases in a PiF SSD,
the peak power consumption of the PiF SSD will increase,
thus significantly limiting its acceleration capability.
A better solution is to employ two ECC modules, a weak

ECC module ECC𝑤 inside a CoX chip and a strong ECC
module ECC𝑠 in an SSD controller. For in-flash acceleration,
ECC𝑤 is used first. When ECC𝑤 fails to correct bit errors
of a flash page, ECC𝑠 outside a CoX chip is used without
an in-flash acceleration. Since it is not possible to encode
data twice when it is written to flash cells, one by ECC𝑤

and the other by ECC𝑠 , both ECC𝑤 and ECC𝑠 should be able
to decode the same encoded data. The efficiency of an in-
flash acceleration largely depends on the error correction
capability of ECC𝑤 .
2.5 Xcore Offloading Requirements
As shown in Figure 2, a PiF SSD supports acceleration in
two levels, 𝐹backend by a CoX chip and 𝐹front by a controller.
To achieve high performance in a PiF SSD, therefore, it is
important to intelligently decide 𝐹backend so that the benefit
of in-flash processing can be maximized. Ideal 𝐹backend can-
didates can meet the following requirements. First, 𝐹backend
should significantly reduce the amount of data transfers from
Xcore to a controller, thus avoiding a large amount of unnec-
essary data transfers. Second, 𝐹backend should be suitable for

1For example, when 𝑃read and 𝑃program are 160 mW and 180 mW, re-
spectively, 20 mW is the upper limit.

data-parallel processing so that the parallelism of multiple
CoX chips can be effectively exploited. When the depen-
dency between CoX chips exists, a PiF SSD will be difficult
to realize high performance because efficient communica-
tions between CoX chips are not easy. Third, the implemen-
tation of 𝐹backend should be feasible under the power/area
constraints of a CoX chip. For example, an in-flash ML model
training function would be a potential candidate for Xcore.
However, implementing such a function would be difficult
because it requires a large SRAM buffer and lots of energy.

3 DESIGN OF PIF-PM
To demonstrate the feasibility of the PiF approach, we de-
signed a prototype PiF SSD, called PiF-PM, that acceler-
ates the performance of applications that require a data fil-
tering process (e.g., log analysis [13, 14], SQL-based data-
base [15, 16], web-scale data analysis [17], and graph min-
ing [18, 19]). To build PiF-PM, we designed a CoX flash chip
with a pattern matcher (PM), CoX-PM, that sends a flash page
to an SSD controller only when the page contains a pattern
that was set by a host. Pattern-matching-based applications
satisfy most Xcore offloading requirements of Section 2.5,
thus fitting very well with a PiF SSD. For example, when we
support a low-level pattern-matching primitive with Xcore
(i.e., 𝐹backend = PM), a large amount of data transfers to a
host can be reduced when matching pages are scarce. Since a
pattern-matching operation can be processed independently
on each CoX chip, high data-level parallelism among CoX
chips can be maximally exploited. Furthermore, an imple-
mentation of a simple pattern matcher is less likely to incur a
high power consumption or a large chip area in a CoX chip.

3.1 Overview of PiF-PM
PiF-PM follows a generic organization of a PiF SSD shown
in Figure 2 with an in-CoX pattern matcher support. As
shown in Figure 5 (a), a low-level flash controller directly in-
terfaces with a CoX chip of PiF-PM with a few custom
commands. Before CoX-PM gets started with its pattern-
matching function, the flash controller initializes a hardware
pattern matcher in CoX-PM by setting its target pattern with
the set_pattern command (1). In PiF-PM, a pattern is spec-
ified by a string of characters (e.g., "apple"). When a page
contains at least one pattern string (e.g., "I would still plant
my apple tree."), the page becomes a matched page.
To distinguish a conditional read with a matched

pattern in CoX-PM from a normal read, we use the
read_when_matched command. As shown in Figure 5 (b),
when read_when_matched is issued with a physical page
address to CoX-PM, a sensed page goes through an internal
ECC decoder (2). When the ECC decoder successfully cor-
rects the flash page, it is sent to the pattern matcher (3 -T).
When the page is matched, it is sent to the flash controller

108

HotStorage’22, June 27-28, 2022, virtual conference M. Chun et al.
This	is	a	guide	for	the	horizontal	width	of	a	figure

se
t_
pa
tt
er
n

Dout

Yes Pattern	
matcher

ECC	
decoder

Flash	cont.

Cell	array

Page	buffer
…

C?

M?

❶

❷

❸‐T
❸‐FNo

Yes
❹‐T

No
❹‐F

CoX‐PM

C:	corrected	and	M:	matched	

ECC

Flash	cell
CoX‐PM

PM

re
ad
_w
he
n

_m
at
ch
ed

re
ad
/e
ra
se

/p
ro
gr
am

(a) (b)
Figure 5: An operational overview of CoX-PM.

(4 -T). Since CoX-PM employs a two-level ECC scheme, the
ECC decoder in CoX-PM can fail (3 -F). When the ECC de-
coder fails, the sensed page in the page buffer is sent to an
SSD controller where a strong ECC module exists. The SSD
controller would perform a pattern matching step as a PiS
SSD would do.
3.2 Design of CoX-PM
On-chip ECC Decoder In order to meet the "encode-once
but decode-twice" requirement of a two-level ECC scheme,
we take advantage of soft and hard decoding algorithms of
LDPC codes that are widely used for modern 3D NAND flash
memory. As with most 3D flash-based SSDs, we use a soft
decoding algorithm of LDPC codes as a strong ECC module
(i.e., ECC𝑠). For a weak in-CoX ECC module (i.e., ECC𝑤), we
use a hard decoding algorithm of LDPC codes. Specifically,
our ECC𝑤 is based on a bit flipping decoder [20] which has a
lightweight hard decoding structure. On the other hand, as a
controller-level ECC𝑠 , we use the min-sum decoder [21] with
a high error correction capability and complex soft decoding
structure. Also, both decoders are constructed from a rate-
0.89 (9216, 8192) QC-LDPC code so that the encoded data can
be decoded by both ECC𝑠 and ECC𝑤 . Since the ECC𝑤 module
can operate with low power while the ECC𝑠 module can
provide the high error-correction capability, our hierarchical
ECC structure efficiently supports in-flash read under the
power constraint without compromising reliability.
Pattern Matcher Since many queries in data-intensive apps
(e.g., Q2 in TPC-H [22]) commonly have multiple predi-
cates, PM supports multiple patterns to be matched within
a page. (In the current implementation, up to 8 patterns are
supported. The maximum pattern size is 32 bytes.) We im-
plemented PM by leveraging a concept of bit-split pattern
matching automata [23] which supports multiple pattern
matching at low cost. PM consists of four 1.2-KB SRAM ta-
bles to store the state of pattern-matching automata. PM
fetches one-byte data per cycle from the ECC decoder for

Table 1: Overhead Analysis of CoX-PM.

Component Area (𝑚𝑚2) Power (mW)
ECC Decoder 0.78 17.6

Pattern Matcher 0.07 1.06

pattern matching. Since the SRAM tables of PM should be
configured to support pattern-matching automata, the SRAM
content is built in advance by an SSD controller2.
Two custom commands for managing PM were imple-

mented by using the vendor-specific command extension
feature of the ONFI flash interface specification [24]. For
the read_when_matched command, its three return val-
ues are specified in the reserved bits (the bits 3 and 4)3
of the ONFI status register. Based on the return value of
read_when_matched, an SSD controller decides if a pattern
matching should be performed or not at the controller level.
Performance and Overhead To understand the perfor-
mance and overhead of the proposed CoX-PM, we imple-
mented ECC𝑤 and PM using OpenRoad [25], an open-source
ASIC design toolchain. To generate SRAM macros for PM,
we used OpenRAM [26], an open memory compiler. In our
current implementation, both the ECC decoding and PM
take 40 𝜇s on average for a 16-KB page. However, these extra
latencies do not degrade the throughput of CoX-PM because
both ECC𝑤 and PM operate in a pipelined fashion4.
We estimated the area/power consumption of the ECC

decoder and PM using the analysis tool of OpenRoad. Table 1
summarizes the estimated results. The area estimate was
0.78𝑚𝑚2 and 0.07𝑚𝑚2 for the ECC decoder and PM, respec-
tively. Since we estimate that about 100 𝑚𝑚2 free space is
available on the bottom layer of a CoX chip, the space over-
head of CoX-PM seems to be negligible. For the peak power
consumption, when CoX-PM is fully operating, CoX-PM con-
sumes 18.66 mWmore power over a normal flash chip. How-
ever, this additional power consumption does not violate
the peak power limit of a normal flash chip. As explained in
Section 2.3, we estimate that at least 20 mW can be safely
allocated for CoX-PM.
3.3 Evaluations
In order to evaluate the effectiveness of PiF-PM over a PiS
SSD, we built a prototype PiF-PM on an OpenSSD plat-
form [28] where an SSD controller was implemented using
Zynq-7000 SoC. For a fair comparison, a prototype PiS SSD,
PiS-PM, was also built on the same OpenSSD platform.

2The content of SRAM tables, which depends on given target patterns,
is generated as a bitstream by an FTL’s special module. The bitstream is
assigned to a unique ID, and the ID is used as an argument of set_pattern.

3When read_when_matched is executed, there are three cases, two
normal executions (i.e., matched_page_found and matched_page_not_found)
and one error execution (i.e., decoding_failure).

4There are two pipelines in CoX-PM. First, two pages are sensed and
processed at the same time. While a page in a page buffer is being processed
by ECC𝑤 and PM, the following page is sensed to a cache buffer [27].
Second, ECC decoding and pattern matching are pipelined. After a 16-KB
page is sensed to a page buffer (or a cache buffer), a 1-KB subpage is decoded
by ECC𝑤 while the previous 1-KB subpage is processed by PM. Since the
page sensing latency is longer than 40 𝜇s, both ECC decoding and pattern
matching are fully overlapped within the latency of sensing the next page.

109

PiF: In-Flash Acceleration for Data-Intensive Applications HotStorage’22, June 27-28, 2022, virtual conference

Since we cannot directly modify flash chips on the platform,
we built an emulation environment for modeling flash chips
using the onboard DRAM. Both CoX-PM chips and normal
flash chips were emulated using this environment. Both SSDs
have four channels. The number of chips per channel varies
from 4 to 64. To fix the SSD capacity under all experiments,
the number of flash block per plane were changed from 2048
to 128 as the number of chips increases from 4 to 64. The read
latency, the program time, and the flash interface bandwidth
per channel were set to 45 𝜇s [29], 400 𝜇s, and 1.2 Gb/s [29],
respectively. We built an operation-centric SSD power model
using a NAND system power calculator [30] and a Xilinx
power estimator. The power/energy consumption of an SSD
was estimated using the collected operation traces with the
SSD power models. As data-intensive apps, we used two
pattern-matching friendly apps, Grep and SQL_Query, from
the previous study [5].
Figure 6 compares the performance and the energy effi-

ciency of PiF-PM and PiS-PM while varying the number
of chips per channel. All values in Figure 6 are normalized
to PiS-PM for a given number of chips. To understand the
maximum benefit of PiF-PM over PiS-PM, we assumed
that all the flash cells are in the early stages of their lifetimes
so that ECC𝑤 can fully correct potential raw bit errors in
flash cells. As shown in Figure 6(a) and 6(b), PiF-PM out-
performs PiS-PM by up to 15.9 times and 18.6 times in the
processing time and the performance per watt, respectively.
PiF-PM achieves better efficiencies in Grep over SQL_Query
because only 6.3% of pages were matched pages in Grep over
16.7% pages in SQL_Query. Figure 6 also shows that PiF-PM
achieves higher gains over PiS-PM as the number of CoX
chips increases. This is because the channel bandwidth is
not scalable in PiS-PM, but the increased parallelism can
be fully exploited in PiF-PM.

The comparison results shown in Figure 6 are based on the
ideal flash reliability condition where all the raw error bits of
flash cells can be corrected by the in-flash ECC𝑤 . However,
in real operating environments, this condition is not always
satisfied. When ECC𝑤 fails to correct some error bits, the
performance of PiF-PM may get deteriorated. For example,
Table 2 shows how the average performance of PiF-PM
under 32 CoX chips per channel changes as the decoding

0
4
8
12
16
20

Sp
ee
du
p

0
4
8
12
16
20

N
or
m
al
iz
ed
	

en
er
gy
	e
ffi
ci
en
cy

#	of	chips/channel

Grep SQL_Query Average

#	of	chips/channel
164 8 32 64 164 8 32 64

(a) Total processing time. (b) Performance per watt.
Figure 6: Comparisons of PiS-PM and PiF-PM.

Table 2: Impact of the ECC𝑤 failure on performance.

Failure rate 0 0.05 0.1 0.15
Normalized performance 1 0.83 0.63 0.51

failure rate of ECC𝑤 increases. For example, when only 85%
of decoded pages are corrected by ECC𝑤 , the performance
of PiF-PM is reduced by 49.9%, which is still significantly
higher than PiS-PM.

In order to better understand the performance implication
of ECC𝑤 on the performance of PiF-PM, we measured the
number of bit errors in modern TLC flash memory under
various conditions. Figure 7 compares the average number
of raw bit errors per 1 KB for different combinations of a
P/E cycle count and a retention time requirement. The cur-
rent ECC𝑤 , whose maximum correction capacity is 72 bits
per 1 KB, successfully decodes raw flash pages except for
the worst-case combination (i.e., 2K P/E cycles with the 12-
month retention time requirement). Therefore, to maximize
the efficiency of PiF-PM, it is important to manage data
reliability so that the number of raw bit errors of a page does
not exceed the maximum correction capacity of ECC𝑤 .
4 RELATEDWORK
Few studies exist on in-flash processing. The closest work to
the PiF approach is ParaBit [31] that exploits in-flash bit-wise
operators (that are commonly found in 2D/3D flash chips).
However, there are significant differences between ParaBit
and the PiF approach. ParaBit is limited to approximate com-
puting where inaccurate results are acceptable because it
does not guarantee error-free reads inside a flash chip. Fur-
thermore, ParaBit does not take advantage of a modern CoP
chip in supporting custom in-flash acceleration.

5 CONCLUSION
As an ultimate PiS solution, we have presented a PiF SSD that
moves computation to inside flash chips so that data transfers
can be minimized. As a key building block of a PiF SSD, we
proposed a CoX flash chip that includes an accelerator and an
ECC decoder. As a prototype PiF SSD, we designed PiF-PM
where pattern matching operations are performed inside
CoX chips. Our evaluation results demonstrate that a PiF SSD
can be a promising solution for accelerating data-intensive
applications in a power-efficient fashion.

0
20
40
60
80
100

Data	retention	requirement	(months)#	
of
	ra
w
	b
it
	e
rr
or
s	

pe
r	
1	
K
B

The	max.	#	of	bit	errors	that	can	be	corrected	by	ECCw (72	bits)
0	P/E	cycles 1K	P/E	cycles 2K	P/E	cycles

60 3 9 1260 3 9 12 60 3 9 12

Figure 7: Changes in the number of raw bit errors.

110

HotStorage’22, June 27-28, 2022, virtual conference M. Chun et al.

ACKNOWLEDGMENTS
This work was supported by Samsung Research Funding
& Incubation Center of Samsung Electronics, Republic of
Korea, under Project Number SRFC-IT2002-06. The ICT at
Seoul National University provided research facilities for this
study. Myungsuk Kim was supported by the National Re-
search Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. NRF-2021R1G1A1094835). (Corre-
sponding author: Jihong Kim.)

REFERENCES
[1] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng,

Simon Garcia de Gonzalo, Youjie Li, et al. DeepStore: In-Storage
Acceleration for Intelligent Queries. In the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019.

[2] Fedor Borisyuk, Albert Gordo, and Viswanath Sivakumar. Rosetta:
Large scale system for text detection and recognition in images. In
the ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), 2018.

[3] Dayong Wang, Charles Otto, and Anil K Jain. Face search at scale: 80
million gallery. arXiv preprint arXiv:1507.07242, 2015.

[4] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex: An Intelligent
Storage Engine with Support for Advanced SQL Offloading. VLDB
Endowment, 7(11), 2014.

[5] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing in-
Storage Computing System for Emerging High-Performance Drive. In
the USENIX Annual Technical Conference (ATC), 2019.

[6] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. KAML: A Flexible, High-Performance Key-Value SSD. In
the IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA), 2017.

[7] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. Query Processing on Smart
SSDs: Opportunities and Challenges. In the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2013.

[8] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-
thy, Xiaodong Zhao, and Yang Seok Ki. SmartSSD: FPGA Accelerated
Near-Storage Data Analytics on SSD. IEEE Computer Architecture
Letters, 19(2), 2020.

[9] Gunjae Koo, Kiran Kumar Matam, Te I., H.V. Krishna Giri Narra, Jing
Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram. Sum-
marizer: Trading Communication with Computing Near Storage. In
the IEEE/ACM International Symposium on Microarchitecture (MICRO),
2017.

[10] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, and Arvind.
GraFboost: Using Accelerated Flash Storage for External Graph Ana-
lytics. In the International Symposium on Computer Architecture (ISCA),
2018.

[11] Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Hosein Bo-
barshad, Vladimir Alves, and Nader Bagherzadeh. GraFboost: Using
Accelerated Flash Storage for External Graph Analytics. In the Euromi-
cro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), 2019.

[12] Jae-Woo Park, Doogon Kim, Sunghwa Ok, Jaebeom Park, Taeheui
Kwon, Hyunsoo Lee, et al. 30.1 A 176-Stacked 512Gb 3b/Cell 3D-
NAND Flash with 10.8Gb/mm2 Density with a Peripheral Circuit
Under Cell Array Architecture. In the IEEE International Solid-State
Circuits Conference (ISSCC), 2021.

[13] Candace Suh-Lee, Ju-Yeon Jo, and Yoohwan Kim. Text mining for secu-
rity threat detection discovering hidden information in unstructured
log messages. In the IEEE Conference on Communications and Network
Security (CNS), 2016.

[14] Seongyoung Kang, Jiyoung An, Jinpyo Kim, and Sang-Woo Jun.
MithriLog: Near-Storage Accelerator for High-Performance Log Ana-
lytics. In the IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2021.

[15] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, et al. Biscuit:
A framework for near-data processing of big data workloads. ACM
SIGARCH Computer Architecture News, 44(3), 2016.

[16] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. En-
abling cost-effective data processing with smart SSD. In the IEEE
Symposium on Mass Storage Systems and Technologies (MSST), 2013.

[17] JianOuyang, Shiding Lin, Song Jiang, ZhenyuHou, et al. SDF: Software-
defined flash for web-scale internet storage systems. In the Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2014.

[18] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos
Siganos, et al. Arabesque: a system for distributed graph mining. In
the Symposium on Operating Systems Principles (SOSP), 2015.

[19] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkatara-
man, et al. ASAP: Fast, approximate graph pattern mining at scale. In
the USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2018.

[20] Khoa Le, Fakhreddine Ghaffari, David Declercq, and Bane Vasić. Effi-
cient hardware implementation of probabilistic gradient descent bit-
flipping. IEEE Transactions on Circuits and Systems I: Regular Papers,
64(4):906–917, 2017.

[21] Thien T. Nguyen-Ly, Tushar Gupta, Manuel Pezzin, Valentin Savin,
et al. Flexible, cost-efficient, high-throughput architecture for layered
ldpc decoders with fully-parallel processing units. In 2016 Euromicro
Conference on Digital System Design (DSD), pages 230–237, 2016.

[22] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H analyzed:
Hidden messages and lessons learned from an influential benchmark.
In the Technology Conference on Performance Evaluation and Bench-
marking (TPCTC), 2013.

[23] Lin Tan and T. Sherwood. A high throughput string matching archi-
tecture for intrusion detection and prevention. In the International
Symposium on Computer Architecture (ISCA), 2005.

[24] ONFI. Open NAND Flash Interface Specification 4.1. http://www.onfi.
org/, 2017.

[25] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaça, Soheil Hashemi, et al.
INVITED: Toward an Open-Source Digital Flow: First Learnings from
the OpenROAD Project. In the ACM/IEEE Design Automation Confer-
ence (DAC), 2019.

[26] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, et al.
OpenRAM: An open-source memory compiler. In the IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2016.

[27] Ki Chang Chun, Hee Joung Park, Tae Seung Shin, and Sung Lae Oh.
Memory device including page buffer and method of arranging page
buffer having cache latches, 2018. US Patent 9,965,388.

[28] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo Jeong, and Yong Ho
Song. Cosmos+ OpenSSD: Rapid Prototype for Flash Storage Systems.
ACM Transactions on Storage, 16(3), 2020.

[29] Dongku Kang, Minsu Kim, Su Chang Jeon, Wontaeck Jung, et al. 13.4
A 512Gb 3-bit/Cell 3D 6th-Generation V-NAND Flash Memory with
82MB/s Write Throughput and 1.2Gb/s Interface. In the IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), 2019.

[30] Micron NAND System Power Calculator. https://www.micron.com/
support/tools-and-utilities/nand-system-power-calculator.

111

http://www.onfi.org/
http://www.onfi.org/
https://www.micron.com/support/tools-and-utilities/nand-system-power-calculator
https://www.micron.com/support/tools-and-utilities/nand-system-power-calculator

PiF: In-Flash Acceleration for Data-Intensive Applications HotStorage’22, June 27-28, 2022, virtual conference

[31] Congming Gao, Xin Xin, Youyou Lu, Youtao Zhang, et al. ParaBit:
Processing Parallel Bitwise Operations in NAND Flash Memory based

SSDs. In the IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2021.

112

	Abstract
	1 Introduction
	2 CoX Design Requirements
	2.1 Key Building Block: CoX Flash Chip
	2.2 Area Constraint
	2.3 Power Constraint
	2.4 Reliable In-Flash Read Requirement
	2.5 Xcore Offloading Requirements

	3 Design of PiF-PM
	3.1 Overview of PiF-PM
	3.2 Design of 0.95CoX-PM
	3.3 Evaluations

	4 Related Work
	5 Conclusion
	References

