
Optimizing Intra-Task Voltage Scheduling Using Data Flow Analysis�

Dongkun Shin Jihong Kim

School of CSE School of CSE
Seoul National University Seoul National University

Seoul, Korea 151-742 Seoul, Korea 151-742
E-mail: sdk@davinci.snu.ac.kr e-mail: jihong@davinci.snu.ac.kr

Abstract— Intra-task voltage scheduling (IntraDVS), which
adjusts the supply voltage within an individual task boundary,
is an effective technique for developing low-power applications.
In IntraDVS, slack times are estimated by analyzing program’s
control flow information. In this paper, we propose an optimiza-
tion technique for IntraDVS using data flow information. The
proposed algorithm improves the energy efficiency by moving the
voltage scaling points to earlier instructions based on the analy-
sis results of program’s data flow. The experimental results using
an MPEG-4 encoder program show that the proposed algorithm
reduces the energy consumption by 40-45% over the original In-
traDVS algorithm.

I. INTRODUCTION

Dynamic voltage scaling (DVS) is one of the most effec-
tive low-power techniques for real-time systems. DVS tech-
niques change the clock speed and its corresponding supply
voltage dynamically to the lowest possible level while meeting
the task’s performance constraint.

For real-time systems, there exist two DVS approaches de-
pending on the scaling granularity. Inter-task voltage schedul-
ing (InterDVS) [9, 1, 5] determines the supply voltage on task-
by-task basis, while intra-task voltage scheduling (IntraDVS)
[8, 7] adjusts the supply voltage within an individual task
boundary. IntraDVS algorithms exploit all the slack time from
run-time variations of different execution paths. Voltage scal-
ing codes, which are inserted at specific program points (called
voltage scaling points) of the target real-time program, adjust
the clock speed depending on the execution path taken during
run time.

In this paper, we propose two optimization techniques for
IntraDVS algorithms, which moves voltage scaling points to
earlier instructions. While the existing IntraDVS algorithms
find the voltage scaling points of a program using the control
flow information of the program, the proposed technique iden-
tifies the earlier voltage scaling points using the data flow infor-
mation of the program as well as the control flow information.

We first briefly describe the original IntraDVS algorithm in
Section II. Two proposed techniques are discussed in Sec-
tion III and IV, respectively. Section V shows program trans-
formation techniques advantageous to the proposed IntraDVS
algorithm. Experimental results are given in Section VI. Sec-
tion VII concludes with a summary.

II. ORIGINAL INTRA-TASK VOLTAGE

�This research was supported by University IT Research Center Project.

S1;
if (cond1) S2;
else
 while (cond2) {

S3;
if (cond3) S4;
S5;

 }
if (cond4) S6;
S7;

(a) program P

b1
10

b2
10

bif
5

b6
5

b7
10

bwh
10

b4
10

b5
10

b3
10

[160]

[30]

[20]

[15]

[10] [120, 80, 40]

[140, 100, 60]

[150, 110, 70, 30]

[130, 90, 50]
maximum
number of loop
iterations = 3

(b) CFG GP

Fig. 1. An example program for IntraDVS.

SCHEDULING ALGORITHM

Consider a hard real-time program P with a deadline shown
in Figure 1(a). The control flow graph (CFG) GP of the pro-
gram P is shown in Figure 1(b). In GP, each node represents
a basic block of P and each edge indicates the control depen-
dency between basic blocks. The number within each node
indicates CEC�bi� which is the number of execution cycles of
the corresponding basic block. The back edge from b 5 to bwh
models the while loop of the program P.

For the speed adjustment, intra-task voltage scheduling tech-
nique uses an adaptive approach with the help of a static pro-
gram analysis technique on worst case execution times. As-
sume that CRWEC�bi� represents the remaining worst case exe-
cution cycles among all the execution paths that start from b i.
Using a modified WCET analysis tool, for each basic block bi,
we can compute CRW EC�bi� in compile time. In Figure 1(b),
the symbol � � contains the CRWEC�bi� values of each basic
block. For the basic blocks related to the while loop (i.e., b wh,
b3�b4�b5), the corresponding nodes are associated with multi-
ple CRWEC�bi� values, reflecting the maximum three iterations
of the while loop.

With the CRW EC�bi� values computed, we can statically
identify an edge �bi�b j� (of a CFG G) where �CRWEC�bi��
CEC�bi�� �� CRWEC�b j�. For example, in Figure 1(b), we can
identify four such edges, i.e., �b1�b2�, �bwh�bi f �, �bi f �b7� and
�b3�b5�, which are marked by the symbol �. These marked
edges form a set of candidate Voltage Scaling Points (VSPs):
the VSPs from branch statements such as �b1�b2� are called
B-type VSPs, and the VSPs from loop statements such as
�bwh�bi f � are called L-type VSPs. If an edge (bi�b j) is selected

as a VSP, it means that the clock speed will change when the
thread of execution control branches to b j from bi. For exam-
ple, the clock speed will be lowered when the basic block b 2
is executed after b1 because the remaining work is reduced by
1/5 (i.e., the ratio of CRWEC�b2� to [CRWEC�b1��CEC�b1�]).

For each selected VSP, the clock speed is changed so that
a new speed is fast enough to complete the remaining work
at the deadline. For example, when the thread of execution
control meets a VSP �bi�b j�, the clock speed can be low-
ered because the remaining work is reduced by [CRWEC�bi��
CEC�bi��CRWEC�b j�]. After bi is executed at the clock speed
S, the clock speed can be changed to reflect the reduction in
the remaining work. The new clock speed for b j is set to

S�
CRW EC�b j�

CRW EC�bi��CEC�bi�
. We call

CRW EC�b j�

CRW EC�bi��CEC�bi�
as the speed

update ratio (SUR) for the edge �bi�b j�.
Since there exists the transition overhead during speed

changes, not all the candidate VSPs are selected as VSPs. A
candidate VSP is selected as a VSP when the number of re-
duced cycles at the candidate VSP is larger than a given thresh-
old value. The threshold value is determined by a VSP selec-
tion policy, which is a function of the transition time overhead,
the transition power overhead, and the code size increase (by
the added scaling code).

In designing IntraDVS algorithms, two key issues exist. The
first issue is how to predict the remaining execution cycles.
Depending on the prediction method, the IntraDVS framework
can be implemented into different IntraDVS algorithms, e.g.,
using the remaining worst-case execution path (RWEP) [8], us-
ing the remaining average-case execution path (RAEP) [7], and
using the remaining optimal-case execution path (ROEP) [6].

The second one is how to determine the voltage scaling
points in the program code. The optimal points are the ear-
liest points where we can detect the changes of the remaining
predicted execution cycles. The previous works are all based
on the control flow information only. In this paper, we propose
new IntraDVS techniques which take advantage of program
data flow analysis.

III. LOOK-AHEAD INTRA-TASK DVS

A. Motivation

The original IntraDVS techniques select the voltage scal-
ing points using the control flow information (i.e., branch
and loop) of a target program. For example, in Figure 2(a),
the IntraDVS algorithm inserts the voltage scaling code,
change f V ��, at the line 19. At the line 19, we can know
that the remaining worst-case execution cycles are reduced be-
cause the function func8 is not executed. However, we can
decide the direction of the branch at the line 16 earlier because
the values of x and y are not changed after the line 8 or the line
11. Figure 2(b) shows the modified program which adjusts the
clock speed and the supply voltage at the line 10 or the line
15. The program in Figure 2(b) consumes less energy than the
one in Figure 2(a) because the functions func6 and func7 are
executed with a lower speed if w � 0 and x� y� 0.

This example shows that we can improve the energy per-
formance of IntraDVS further if we can move voltage scaling
points to the earlier instructions. To change the voltage scaling
points, we should identify the data dependency using a data
flow analysis technique. The data flow analysis provides the

 1: v = func1();
 2: if (v > 0) {
 3: w = func2();
 4: x = 3;
 5: y = -3;
 6: z = func3();
 7: if (z > 0) {
 8: x = func4();
 9: }
10: else {
11: y = func5();
12: func6();
13: }
14: func7();
15: if (w > 0) {
16: if (x+y > 0)
17: func8();
18: else
19: change_f_V();
20: func9();
21: }
22: }

(a) Original IntraDVS

 1: v = func1();
 2: if (v > 0) {
 3: w = func2();
 4: x = 3;
 5: y = -3;
 6: z = func3();
 7: if (z > 0) {
 8: x = func4();
 9: if (w>0 && !(x+y>0))
10: change_f_V();
11: }
12: else {
13: y = func5();
14: if (w>0 && !(x+y>0))
15: change_f_V();
16: func6();
17: }
18: func7();
19: if (w > 0) {
20: if (x+y > 0)
21: func8();
22: func9();
23: }
24: }

(b) Look-ahead IntraDVS

Fig. 2. An example program for look-ahead IntraDVS.

information about how a program manipulates its data [4]. Us-
ing data flow analysis, we can decide program locations where
each variable is defined and used. We call the proposed In-
traDVS technique based on data flow information as the look-
ahead IntraDVS (LaIntraDVS) technique.

B. Single-Step Look-ahead IntraDVS

For LaIntraDVS, we need several post-processing steps after
the voltage scaling points are selected by the original IntraDVS
algorithm. To explain the post-processing steps, we define fol-
lowing terms and notations.

Definition 1 An instruction I is called a definition dx of a
variable x if the instruction I assigns, or may assign, a value
to x.

Definition 2 Given a program location t, a definition dx of a
variable x is called a data predecessor Pt

x of the variable x
at t if there exists a path from dx to t such that the value of x
is not changed along the path. A data predecessor set ��t�x�
of the variable x at t is a set of all data predecessors of the
variable x at t.

Definition 3 Given a program location t and a variable x,
a program location p is called a look-ahead point Lt

x of the
variable x at t if the following two conditions are satisfied:

� There exists one or more paths from p to t but there is no
path from p to t such that the value of x is changed along
the path.

� There is no other program location p� between Pt
x and p,

which satisfies the first condition.
A look-ahead point set ��t�x� is a set of all look-ahead points
of the variable x at t.

Definition 4 Given a voltage scaling point s, a variable v is
a condition variable of s if the value of the variable v deter-
mines whether s is executed or not at run time.

Definition 5 Given a voltage scaling point s and the set of
condition variables V �s� � �v1� � � � �vn� of s, a look-ahead
point p 	 ��s�v1 �
 �� �
 ��s�vn� is a look-ahead voltage
scaling point (LaVSP) of s if there is no other look-ahead
point p� 	 ��s�v1 �
 �� �
��s�vn � along the path from p to s.
The set of all look-ahead voltage scaling points is denoted by
LaVSP�s�.

Given an original voltage scaling point s, we first identify
the branch condition C�s� which is the necessary condition for
s to be executed at run time. Second, using the variables in the
expression of C�s�, we compose a set of condition variables
V �s�. Third, the data predecessor set ��s�vi� and the look-
ahead point set ��s�vi � are identified for each variable vi in
V �s� using a data flow analysis technique. Fourth, we identify
the look-ahead voltage scaling points LaVSP�s�. Lastly, we in-
sert the voltage scaling codes at the look-ahead voltage scaling
points.

For example, in Figure 2(a), the branch condition for the
voltage scaling point at line 19 is C�s� � �v � 0� � �w �
0� � ��x � y � 0�. The variables in C�s� are v�w�x� and y
(i.e., V �s� � �v�w�x�y�). If we represent a program point with
its line number, ��s�v� � �1�, ��s�v� � �2�, ��s�w� � �3�,
��s�w� � �4�, ��s�x� � �4�8�, ��s�x� � �9�11�, ��s�y� �
�5�11�, and ��s�y� � �8�12�. From this information, we can
know that LaVSP�s� � �9�12�. Figure 2(b) shows the mod-
ified program with LaVSPs. At the lines 9 and 14, control
expressions are inserted to reflect the condition C�s� � �v �
0�� �w � 0����x � y � 0�. Since the condition �v � 0� is
always true at the lines 9 and 14, it is unnecessary to insert a
control expression for the condition.

With the LaVSPs, the next step is to determine the speed
update ratio. For example, if a original VSP �bi�b j� has the
LaVSP p, the speed update ratio at p is

r�p� �
CRWEC�p�� �CRW EC�bi��CEC�bi��CRW EC�b j��

CRWEC�p�

because the reduced cycles at the VSP �bi�b j� is CRWEC�bi��
CEC�bi��CRWEC�b j�.

In Figure 2(a), if the clock speed is f15 at the line 15, the
clock speed at the line 19, f19, will be

f19 � f15 �
Cf unc9

Cf unc8 �Cf unc9

(when we consider only the execution cycles for functions),
where Cf unc8 and Cf unc9 are the worst-case execution cycles
for the functions func8 and func9 respectively. However, in
Figure 2(b), the clock speed at the line 10 and the line 15 are

f10 � f9�
Cf unc7 �Cf unc9

Cf unc7 �Cf unc8 �Cf unc9

and

f15 � f14 �
Cf unc6 �Cf unc7 �Cf unc9

Cf unc6 �Cf unc7 �Cf unc8 �Cf unc9

respectively.

 1: x = func1();
 2: y = func2();
 3: func3();
 4: z = x + y;
 5: func4();
 6: if (z > 0)
 7: func5();
 8: else
 9: change_f_V();
10: func6();

(a) Original IntraDVS

 1: x = func1();
 2: y = func2();
 3: func3();
 4: z = x + y;
 5: if (!(z>0))
 6: change_f_V();
 7: func4();
 8: if (z > 0)
 9: func5();
10: func6();

(b) Single-Step LaIntraDVS

 1: x = func1();
 2: y = func2();
 3: _z = x + y;
 4: if (!(_z>0))
 5: change_f_V();
 6: func3();
 7: z = x + y;
 8: func4();
 9: if (z > 0)
10: func5();
11: func6();

(c) Multi-Step LaIntraDVS

Fig. 3. An example program for multi-step look-ahead IntraDVS.

IV. MULTI-STEP LOOK-AHEAD INTRADVS

Although the look-ahead approach in LaIntraDVS can im-
prove the energy performance of the IntraDVS technique, there
are many cases where the cycle distance between the origi-
nal VSP and the newly identified LaVSP is relatively short,
achieving a small energy gain only1. This is the limitation
of the single-step LaIntraDVS approach, where an look-ahead
point is directly used as a voltage scaling point. To solve this
problem, we propose the multi-step look-ahead IntraDVS tech-
nique, where the look-ahead point is recursively processed to
find earlier scaling points.

Figure 3 shows an example of the multi-step look-ahead In-
traDVS algorithm. For the program generated by the origi-
nal IntraDVS algorithm (shown in Figure 3(a)), the single-step
LaIntraDVS algorithm moves the scaling location to the line
6 as shown in Figure 3(b). Since the variable z is defined at
the line 4, LaIntraDVS inserted the voltage scaling code at the
lines 5 and 6. However, the variable z is the sum of x and y,
and the values of both x and y are known before the function
func3. If the number of execution cycles for func3 is large and
the addition operation requires small execution cycles, it is bet-
ter to insert the addition code and the voltage scaling code just
after the line 2. Figure 3(c) shows the program modified using
this idea. Since the variable z could be used before the defi-
nition point at the line 7, we use the variable z at the lines 3
and 4. (If the variable z is not used before the line 7, we do not
need to use the variable z.) If x� y� 0, the function func3 is
executed with a lower speed in Figure 3(c) compared with in
Figure 3(b).

Figure 4 summarizes the detailed steps of the multi-step
LaIntraDVS algorithm. The algorithm has two functions.
The function MS LaVSP Search does the same operations
with the single-step LaIntraDVS algorithm except that it calls
Find MDP. The function Find MDP finds the multi-step data
predecessors. It first finds the predecessor set, P, for an input
variable. Each predecessor p in P is examined whether there
is an energy gain when the cycle distance between s and p is
Distance�p�s� and the overhead value is Coverhead . This is to
consider the overhead instructions required for the multi-step
LaVSP technique such as the line 3 in Figure 3(c).

If there is an energy gain in spite of the overhead cycles
Coverhead , we further examine the data predecessor p. In this

1Since a variable is generally defined just before the variable is used, the
look-ahead IntraDVS approach would show little enhancement in the energy
performance.

case, we call p as the intermediate data predecessor. Then, the
variables in the data predecessor p are identified. For the data
predecessor at the line 4 in Figure 3(a), it has the variables
x and y. We call the function Find MDP with the variables
recursively. The function also has the number of overhead cy-
cles for the intermediate data predecessor p, Overhead�p�, as
an input. If there is no energy gain due to a large Coverhead ,
the recursive function call is terminated. With this algorithm,
we can find LaVSPs which can reduce the energy consumption
despite of overhead instructions.

1: MS LaVSP Search(s) �
2: C�s� := Find Conditions(s);
3: V �s� := /0;
4: for ci � C�s�
5: V �s� := V �s� � Find Variables(ci);
6: for v j � V �s� �
7: ��s�v j� := Find MDP(s�v j�0);
8: ��s�v j� := Look-ahead(��s�vj�);
9: �

10: LaV SP�s� := Merge(��s�v1�� � � � � ��s�vn�);
11: Transform(LaV SP�s�,C�s�);
12: �
13:
14: Find MDP(s�v j�Coverhead) �
15: P := Find Data Predecessor(s�v j);
16: for p � P �
17: if (EnergyGain(Distance�p�s�, Coverhead)) return �s�;
18: V ��p� := Find Variables(p);
19: P := P � �p�;
20: for vk � V ��p�
21: P : = P � Find MDP(p�vk�Overhead�p�);
22: �
23: return P;
24: �

Fig. 4. Multi-step LaVSP search algorithm.

In transforming a program, the intermediate data predeces-
sors are used as well as the conditions of the original voltage
scaling point. For the variable which is defined in the interme-
diate data predecessors, we should use a copy of the variable
(e.g., z in Figure 3(c)) to preserve the program behavior.

Figure 5 shows how to estimate whether there is an energy
gain when a LaVSP is used. In Figure 5(a), the clock speed
is changed from S1 to S2 � S1 �

C2
C3

at the original voltage scal-
ing point because the remaining workload is changed from C 3
to C2. In this case, the energy consumption can be computed
by Eorg �C1S2

1 �C2S2
2 assuming that supply voltage is propor-

tional to clock speed.
In Figure 5(b), LaIntraDVS found the look-ahead VSP

which is executed C1 cycles earlier than the original VSP. As-
suming that we need C0 overhead cycles to adjust the clock
speed at the LaVSP, the energy consumption is given by E La �

C0S2
1 � �C1 �C2�S2

3 where S3 is S1
C1�C2

C1�C3�C0
. The condition

for LaIntraDVS to be more energy-efficient than the original
IntraDVS technique is Eorg � ELa.

Eorg�ELa � C1S2
1 �C2S2

2 �C0S2
1� �C1 �C2�S

2
3 � 0

C0 � C1 �C2�S2�S1�
2� �C1 �C2��S3�S1�

2

C3

original VSP

time

speed

C1
C2

S1

S2

(a) Original IntraDVS

LaVSP

time

speed

C0 C1+C2

S3

overhead code

S1

(b) LaIntraDVS

Fig. 5. Overhead in LaIntraDVS.

C0 � C1 �
C3

2

C2
3

�
�C1 �C2�

3

�C1 �C3�C0�2

The function EnergyGain in Figure 4 checks this condition to
decide whether there is an energy gain.

For L-type VSPs, it is not trivial to make the condition
for the VSPs. In Figure 6(a), the while loop executes
�N �
i��k� times. In the original IntraDVS technique, the variable
LoopIterNum is used to know the number of loop iteration.
The voltage scaling code at the line 12 reduces the clock speed
if
�N � i��k� is smaller than the maximum number of loop
iterations, M. Therefore, the condition for voltage scaling is
C�s� �
�N � i��k� � M. If we know the values of i�k� and
N in advance, we can reduce the clock speed before the while
loop. However, it is not trivial to derive the number of loop
iterations
�N � i��k� from a program. Using a parametric
worst-case execution time analysis technique such as [3], we
can know the number of loop iterations. But, we can use a
simpler technique. For the L-type VSP, the loop termination
condition and the multi-step LaIntraDVS technique are used.

For example, in Figure 6(a), the loop termination condition
is C�s� ���i�N�. (Note that the expression does not have the
variable k.) By analyzing data predecessors for the variables in
C�s�, we can get ��s� i� � �3�9� and ��s�N� � �1�. If we
handle the data predecessor at the line 9 as an intermediate
data predecessor, ��s� i� is changed into �2�3�. Using ��s� i�
and ��s�N�, we can get the look-ahead voltage scaling point
LaVSP�s� � �3�. Therefore, we can insert the voltage scaling
codes after the line 3. Figure 6(b) shows the modified program
by the multi-step LaIntraDVS. To reflect the condition C�s� �
��i � N�, the while statement is inserted at the line 6. An
assignment statement is also inserted at the line 8 because the
statement is related to an intermediate data predecessor. All the
variables defined at intermediate data predecessors are cloned
like the variable i at the line 4.

V. FURTHER ENHANCEMENTS

The look-ahead IntraDVS is to move voltage scaling points
to the LaVSPs where we can predict the direction of a con-
trol flow. The energy reduction by LaIntraDVS is significant

 1: N = func1();

 2: k = func2();

 3: i = func3();

 4: func4();

 5: LoopIterNum=0;

 6: while (i < N) {

 7: LoopIterNum++;

 8: func5();

 9: i = i + k;

10: }

11: if (LoopIterNum < M)

12: change_f_V();

13: func6();

(a) Original IntraDVS

 1: N = func1();

 2: k = func2();

 3: i = func3();

 4: _i = i;

 5: LoopIterNum = 0;

 6: while(_i < N) {

 7: LoopIterNum++;

 8: _i = _i + k;

 9: }

10: if (LoopIterNum < M)

11: change_f_V();

12: func4();

13: while (i < N) {

14: func5();

15: i = i + k;

16: }

17: func6();

(b) Look-ahead IntraDVS

Fig. 6. An example program for L-type VSP.

when the distance between the original VSP and the LaVSP is
long. Therefore, it is better to schedule the look-ahead volt-
age scaling points as early as possible at the compiler level.
We call this instruction scheduling as an LaIntraDVS-aware
instruction scheduling.

In the algorithm level, the loop splitting technique can be
useful for LaIntraDVS. When a loop body has both the origi-
nal VSP and the corresponding LaVSP, we split the loop into
two separated loops which have the VSP and the LaVSP re-
spectively. By the loop splitting, we can change the distance
between the original VSP and the LaVSP.

Figure 7 shows the code transformation by loop splitting.
In Figure 7(a), we assume that the execution cycles of func-
tions funcA, funcB and funcC are 10, 10 and 20, respectively.
When N is 10, the worst-case execution cycles of this loop
is 300 (when we consider only the execution cycles for func-
tions). Whenever the function funcA returns 1, the voltage
scaling point at the line 6 reduces the clock speed. If the clock
speed at the line 5 is f5, the clock speed is changed to

f5 �
Cf uncB ��Cf uncA �Cf uncC� � �9� i�
Cf uncC ��Cf uncA �Cf uncC� � �9� i�

� f5 �
10�30 � �9� i�
20�30 � �9� i�

at the line 7 (assuming the voltage transition overhead is 0).
Since the look-ahead voltage scaling point (line 5) is same
to the original voltage scaling point, we cannot use the LaIn-
traDVS technique.

However, if we transform the program using loop splitting
as shown in Figure 7(b), we can take full advantage of LaIn-
traDVS. While the original VSP is located in the second loop,
the LaVSP is in the the first loop. Whenever the value of each
a�i� is determined to be 1 at the first loop, we can reduce the
clock speed at the LaVSP at the line 6. If the clock speed at
the line 4 is f4, the clock speed is changed to

f4 �
10 � �i�1��20 � �9� i�

10 � i�20 � �10� i�

by the LaVSP. Figure 7(c) shows the speed change graphs of

 1: int a[N];
 2:
 3: for (i=0; i<N; i++) {
 4: a[i] = funcA();
 5: if (a[i]) {
 6: change_f_V ();
 7: funcB();
 8: }
 9: else
10: funcC();
11: }

(a) Original program

 1: int a[N];
 2:
 3: for (i=0; i<N; i++) {
 4: a[i] = funcA();
 5: if(a[i])
 6: change_f_V ();
 7: }
 8: for (i=0; i<N; i++) {
 9: if (a[i]) funcB();
10: else funcC();
11: }

(b) Transformed program

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300
time

sp
ee

d

loop splitoriginal

(c) Speed change graph

Fig. 7. Code transformation: loop splitting.

two programs when all a�i�s are 1. The clock speed of the pro-
gram transformed by the loop splitting is reduced more quickly
and does not change during the execution of the second loop.
If we assume that the energy consumption is proportional to
the square of the clock speed, the LaIntraDVS technique with
loop splitting reduces the energy consumption by 15% in this
example.

Another enhancement technique for LaIntraDVS is the func-
tion inlining. For the program in Figure 8(a), a voltage scaling
point is the line 12 because the function funcC is not executed
when i � 0. The data predecessor of the variable i is the line 2
in the function funcA. But, the line 2 is not a look-ahead point
of i because the function funcA is called at the line 8 with the
input variable j. Therefore, we cannot move the voltage scal-
ing point to the line 3. If we inline the function funcA to the
line 6 as shown in Figure 8(b), the line 6 becomes a look-ahead
point of the variable i. LaIntraDVS inserted the LaVSP to the
line 7-8.

VI. EXPERIMENTS

In order to evaluate the energy efficiency of LaIntraDVS
techniques, we have experimented with an MPEG-4 video en-
coder and an MPEG-4 decoder. We first made a framework
for LaIntraDVS as shown in Figure 9. We used the automatic
voltage scaler (AVS) introduced at the previous works [8]. The
original AVS takes a target program as an input, finds the
VSP information using the original IntraDVS algorithm, and
generates the modified DVS-aware program. We added the
Look-ahead VSP Analyzer which generates the look-ahead
VSPs for each VSP using the algorithm in Figure 4. The Data
Flow Analyzer finds the data predecessors for each VSP us-
ing the data flow analysis technique. The Data Flow Analyzer

 1: void funcA(int *a) {
 2: *a = funcF();
 3: }
 4:
 5: void main() {
 6: funcA(&i);
 7: funcB();
 8: funcA(&j);
 9: if (i > 0)
10: funcC();
11: else
12: change_f_V ();
13: funcD();
14: }

(a) Original program

 1: void funcA(int *a) {
 2: *a = funcF();
 3: }
 4:
 5: void main() {
 6: i = funcF();
 7: if (!(i >0))
 8: change_f_V ();
 9: funcB();
10: funcA(&j);
11: if (i > 0)
12: funcC();
13: funcD();
14: }

(b) Transformed program

Fig. 8. Code transformation: function inlining.

corresponds to the function Find Data Predecessor in Fig-
ure 4. Using the look-ahead VSP information, AVS generates
the DVS-aware program.

Target
Program

DVS-aware
Program

Data Flow
Analyzer

Look-ahead
VSP Analyzer

Automatic Voltage Scaler

VSP
information

LaVSP
Information

Fig. 9. The framework for look-ahead IntraDVS.

Figure 10 shows the energy consumption of three kinds of
MPEG-4 encoder programs, which employ the original In-
traDVS, the single-step LaIntraDVS and the multi-step LaIn-
traDVS, respectively. The figure also compares the results for
the RWEP-based techniques and the RAEP-based techniques.
The energy consumption is normalized by the result of the
RWEP-based IntraDVS technique. As shown in Figure 10,
the single-step LaIntraDVS reduced the energy consumption
by only 4�6%. This is because most of look-ahead points are
located closely to the original VSPs. However, the multi-step
LaIntraDVS shows significant energy reductions of 40�45%.
The energy performance of LaIntraDVS is dependent on the
application characteristic. For an MPEG-4 decoder program,
even the multi-step LaIntraDVS shows little energy reductions.

0

0.2

0.4

0.6

0.8

1

RWEP-based RAEP-based

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Original IntraDVS Single-Step LaIntraDVS Multiple-Step LaIntraDVS

Fig. 10. Experimental results of look-ahead IntraDVS.

The energy performance of the multi-step LaIntraDVS is
closely related to the application’s slice size. Weiser [10] in-
troduced the concept of program slice, which allows the user
to focus on the portion of the program responsible for a partic-
ular phenomenon. There are two kinds of slices, i.e., backward
slice and forward slice. While a backward slice consists of all
program points that affect a given point in a program, a forward
slice consists of all program points that are affected by a given
point in a program. When we use the multi-step LaIntraDVS
technique, a portion of a backward slice of a VSP should be
copied before the LaVSP. Therefore, if the size of the back-
ward slice is large, the overhead cycles for LaVSPs become
large, limiting the energy gain of LaIntraDVS.

The slice size is dependent on the target program point.
However, average slice size is considerably smaller compared
with the original code size [10, 2]. The multi-step LaIn-
traDVS applied to MPEG-4 encoder program copied only four
C-statements for LaVSPs.

VII. CONCLUSIONS

We proposed novel intra-task voltage scheduling algorithms
called look-ahead IntraDVS, which exploit data flow informa-
tion as well as control flow information of a program. The
look-ahead IntraDVS optimizes the voltage scaling points such
that we can adjust the clock speed based on the workload as
early as possible. The experimental results using an MPEG-4
encoder showed that the look-ahead IntraDVS can reduce the
energy consumption by 40�45% over the original IntraDVS
algorithm.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and Ag-
gressive Scheduling Techniques for Power-Aware Real-Time Systems.
In Proc. of IEEE Real-Time Systems Symposium, 2001.

[2] L. Bent, D. C. Atkinson, and W. G. Griswold. A Comparative Study
of Two Whole Program Slicers for C. Technical Report CS2001-0668,
Dept. of Computer Science and Engineering, University of California at
San Diego, 2001.

[3] Bjorn. Fully Automatic, Parametric Worst-Case Execution Time Analy-
sis. In Proc. of International Workshop on Worst-Case Execution Time
Analysis, pages 85–88, 2003.

[4] S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[5] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems. In Proc. of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP’01), 2001.

[6] J. Seo, T. Kim, and K.-S. Chung. Profile-Based Optimal Intra-Task Volt-
age Scheduling for Hard Real-Time Applications. In Proc. of the 41st
Design Automation Conference, pages 87–92, 2004.

[7] D. Shin and J. Kim. A Profile-Based Energy-Efficient Intra-Task Voltage
Scheduling Algorithm for Hard Real-Time Applications. In Proc. of
International Symposium on Low Power Electronics and Design, pages
271–274, 2001.

[8] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for Low-
Energy Hard Real-Time Applications. IEEE Design and Test of Com-
puters, 18(2):20–30, 2001.

[9] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems. In Proc. of Design Automation Conference,
pages 134–139, 1999.

[10] M. Weiser. Program Slicing. IEEE Transactions on Software Engineer-
ing, 10(4):352–357, 1984.

