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ABSTRACT 

 
Dynamic voltage scaling (DVS) and dynamic power management (DPM) are widely-used techniques to reduce 

energy consumption in modern computing systems. Although combining these techniques can save more energy, 

there has not been much work focused on energy-optimal combination of these techniques under variable 

memory clock frequencies. In this paper, we explore system-wide energy-optimal frequency space, employing a 

memory-aware DVS technique with a stochastic memory access model on frequency-variable memory devices 

for an MPEG-4 application. In addition, we propose a simple but practical DVS method, which can be applied 

to an actual platform. 

 

I. INTRODUCTION 

Recently mobile information terminals become more and more popular due to the user’s requirement of 

immediacy in accessing information and multimedia. These devices are actually battery-operated and efficient 

use of restricted battery resources may be requisite on them. To prolong the lifetimes of batteries in use, we need 

effective power management techniques. Dynamic power management (DPM) and dynamic voltage scaling 

(DVS) are most representative low-power techniques controlling power consumption. 

DPM is a technique reducing power dissipation by selectively powering down based on the usage patterns for 

such non-voltage scalable devices as memory chip, disk, etc. In these devices energy consumption depends on 

variation of not voltages but currents. In the meantime , DVS is a low-power technique to achieve a quadratic 

energy saving while tolerating linear performance degradation according to the variation of supply voltages in 

variable voltage processors [1]. As processor energy may take a high percentage of the total system energy 

consumption and memory chips are reported to be high power consumers in the portable computing systems , 

DVS algorithms considering power management of external memories have much been studied for the optimal 

system-wide energy consumption [2, 3, 4]. In [2], memory behaviors in setting CPU speeds are considered and a 

polynomial-type relation between the clock frequency and the power dissipation is proposed. In [3], synergetic 

effects are investigated in combining DVS techniques and DPM policies without or with a power-aware memory.   



In [4], an  elegant integration of DVS and DPM is studied on the basis of the streaming frame requests instead of 

the external memory requests. In these previous works, they assume external memories are  usually supplied with 

a fixed supply voltage and a fixed clock frequency. However, some recent embedded processors (e.g. XScale) 

allow limited variation of the clock frequency for the external memories due to synchronization between the 

main bus linked to the processor and the memory control bus. Therefore, integration of DVS and DPM for 

frequency-variable memory devices needs to be studied from the viewpoint of the system-wide optimal energy 

consumption. In [5], a merge of DVS and DPM based on a realistic energy model of external memory devices is 

studied, and they also propose an analytical energy model depending on not only the processor clock frequency 

but also the memory clock frequency considering external memory behaviors. 

In this paper, we address the problem of memory aware DVS for systems with variable memory clock 

frequencies. To the best of our knowledge, [5] is the only published work which addressed the combined DVS 

and DPM for the systems with variable memory clock frequency. However, [5] never considers memory access 

patterns and adopts a naive DPM scheme for the slack time after completion of a task till a deadline. Our work 

explores the energy-optimal frequency space using a DVS technique with a threshold-based DPM scheme 

depending on a stochastic model of memory accesses. In addition, we propose a simple but practical memory-

aware DVS method. Experimental results using an MPEG-4 application shows the feasible energy-optimal 

frequencies vary depending on the degree of DPM energy saving. They also show our technique reduces the total 

energy consumption by more than 34% over the existing technique. 

The rest of this paper is organized as follows. We describe a main motivation of our work in Section II while 

the energy model for memory-aware DVS and DPM is presented in Section III. We explore the feasible energy-

optimal frequency space for an MPEG-4 application in Section IV.  Section V concludes with a summary. 

 

II. MOTIVATIONAL EXAMPLE 

Feasible energy-optimal frequency assignment with a frequency-variable memory device indicates that lower   

processor frequency and memory frequency do not always result in lower total energy consumption [5]. This is 

because memory energy consumption in the used energy model is affected by a trade-off between static energy 

and the dynamic energy of an external memory device according to the variation of both frequencies. The 

memory energy consumption is shown to be convex due to static memory energy, and the total system-wide 



energy consumption is governed by the convexity. However, in general different memory energy model or 

memory access patterns may affect the total system-wide energy critically with the memory frequency varying.  

As a motivational example, we will investigate what the feasible energy-optimal frequency space becomes if a  

deeper DPM mechanism is applied to the memory device model of the previous work. In Fig. 1, the left picture 

shows the original feasible solution space of the energy-optimal clock frequency setting on a MPEG-4 decoder 

program [5]. In this  picture, the center of the contours means a globally energy-optimal point and each contour 

line does the same total energy consumption value. The solid curve shows the relation between the processor 

frequency and the memory frequency meeting the deadline constraint of a one frame decoding, that is, the 

deadline is always met in the upper region of this curve. (a) is a frequency assignment ignoring both memory 

energy and access time. (b) and (c) are frequency assignments considering only memory access time and 

considering both memory energy and access time, respectively. As (c) is nearest to the center and is above the 

solid curve, the frequency pair at (c) is the feasible energy-optimal solution. We can notice that the processor 

frequency at (c) is higher than that at (b), but the energy consumption of (c) is rather lower than that of (b). And, 

we also notice that the global energy-optimal point is outside the boundary of the feasible solution space.  

To obtain a deeper DPM mechanism we augmented the original energy model [5] to enable a memory device 

to transition into a lower power state after its staying at the idle state during a specified threshold time 

irrespective of execution of the task. Because memory traces are not available we estimated average interarrival 

time using the processor execution cycles, memory access count and the deadline published in the previous work,  

and we employed a stochastically energy-minimizing policy based on an exponential distribution.  

 

 

Fig. 1. Original[5] and changed feasible solution space with deeper DPM 



The right picture in Fig. 1 shows the changed frequency space when a memory energy model including a 

threshold-based DPM technique is used. We notice the center of the contours is  moved towards a left Y-axis and 

also notice (b) becomes nearer to the energy-optimal point than (c) at a short glance. That is, although the 

frequency pairs are the same as those in the original frequency space energy consumption at (b) becomes lower 

than at (c) actually in the right figure. This phenomenon occurs because more DPM reduces static memory 

energy and the convexity of the total energy on the frequency pair changes such that a minimum point exists for 

the processor frequency, however, this does not occur for the memory frequency. 

We observed that a deeper DPM mechanism affected the feasible frequency space very much when the 

memory frequency was varying and it resulted in the movement of the feasible energy-optimal frequency pair. 

Therefore, it seems important and meaningful to take into consideration which DPM mechanism and how much 

further DPM we should employ in build ing an efficient energy consumption model. In the remaining Sections, 

among many DPM techniques we will study an analytical energy consumption model considering a threshold-

based DPM technique based on a stochastic memory access model for a frequency-variable memory device. 

 

III. MEMORY-AWARE COMBININATION OF DVS AND DPM  

In this Section, assuming that memory traces are given we first introduce memory states and a memory access 

model. And, we build a processor energy model and a memory energy model based on them with a memory-

aware low power technique combining DVS and DPM considered. Then, we describe how to find the system-

wide energy-optimal solution analytically.  

 

1. Memory States and Access Model 

We assume that external memory is an SDRAM device which has usually three power states in terms  of 

power dissipation: an active state, an idle (or standby) state, and a powerdown state as shown in Fig. 2.  
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Fig. 2. Power states of an SDRAM device 



In Fig. 2, AIP  and IAP  are the transition power from the active state to the idle state and vice versa 

respectively. Similarly, IPP  and PIP  are the transition power from the idle state to the powerdown state and 

vice versa respectively. IIP  is the dynamic power due to the necessity for clock propagation during the idle state. 

ASP , ISP , and PSP  are the static power of the active state, the idle state, and the powerdown state respectively. 

The powerdown state is assumed not to perform any refresh operations.  

For the modeling of the memory access patterns, [4] shows approaches purely based on exponential 

distributions may not model well real system behaviors. However, [6] says that using exponential as an 

approximation of the real interarival time distribution is sufficient as it produces results consistent with 

simulation. Based on the observation of [6] we assume that the interarrival time  between memory accesses 

follows an exponential distribution and hence the count of memory accesses follows a Poisson Process, say, N(t).  

(In practice modeling memory transactions with another stochastic processes is possible, but it is beyond the 

range and concern of this paper.) Let P[N(t)=n] be the probability that n arrivals occur in time interval of t , then 

it is presented as the next equation [7]. 
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This means that the interarrival time T is exponentially distributed.  

 

2. Energy Model  

Let us assume that while an soft real-time periodic task executes within the deadline, dτ , the processor runs 

for cN  cycles at the clock frequency of cf  and the external memory is accessed K  times as shown in Fig. 3. 

Here, acct  is the average delay of accessing the external memory when each cache miss occurs and is 

approximated as the time between when the external memory request arrives and when the request is completely 

served. The external memory transitions from the active state to the idle state after serving the memory request 



and does from the idle state to the powerdown state after staying at the idle state for the specified threshold, 

tht . terarrivalint  is the difference of time between the present memory request and the next one, and occurs K  

times during execution of a task.  And, the external memory is assumed to be supplied with the memory clock 

frequency, mf  and have a burst mode with bM , number of memory clock cycles for a burst-mode transition. 

Then, the total execution time, exeτ  can be approximated as 
c
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2.1 Processor Energy Model  

We assume the energy consumption of the processor is proportional to the square of supplied clock frequency. 

For the total processor energy, we only consider the dynamic processor energy. Then, the processor energy is  

cccc NfkCE 22α=  

Where, α  is the switching activity, cC is the switching capacitance, k  is the proportional coefficient 

between the supply voltage ( ddV ) and the clock frequency ( cf ), and cN  is the total execution cycles with no 

external memory accesses.  
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Fig. 3. Processor energy, external memory energy, and memory behaviors 



2.2 Memory Energy Model 

For the tractable memory energy model, we assume the total number of external memory accesses is given at a 

fixed value, K  and the distribution of the memory access pattern follows the exponential distribution with the 

access arrival rate, λ . And assume that T  is  a random variable of the interarrival time between memory 

accesses, as described in subsection 1. It may be more comprehensible to classify the total energy during 

memory operation into two categories: dynamic energy and static energy. 

o  Dynamic Energy 

Since memory accesses occur K times while a task execute we can get the energies KE IA  and KEAI  easily, 

which are needed to transition between the idle state and the active state. Next, to derive the dynamic energy at 

the idle state is a little more elaborate and state and it is assumed as a consumed energy value per elapsed cycle. 

When the clock frequency of the processor is scaled to cf  as a task runs, the pattern of memory accesses  is still 

maintained but the arrival rate of memory accesses is slowed down and the distribution is spread by the amount 

of axcmc ff . Therefore, the total average interarrival time becomes 
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dynamic memory energy is  
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o  Static Energy 

First, the static energy at the active state during the memory access can be calculated by 
m
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bMK  is the total number of memory access cycles and 
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state. Using the probability the average static energy at the idle state is 
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Consequently, the total system-wide energy is  

)(][

][

][][

][

m

b

c

c
dPSPIIP

c

xcma
thaccPS

c

axcm
thaccIS

m

b
AS

thaccPIthaccIP

c

axcm
thaccmIIAIIA

ccc

msmdcmct

f
MK

f
N

PEE
f

f
ttTPKP

f

f
ttTPKP

f
MK

P

ttTPKEttTPKE

K
f

f
ttTPfEKEKE

NfkC
EEEEEE

−−++++>

++≤+

++>++>

++≤++

+=
++=+=

τ
λ

λ

λ

α

1

1

22

 

For the exponential distribution, employing 
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=> ][  and an approximated formula from the 

Maclaurin Series [8], the total energy can be rearranged as follows.  
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3. Finding Energy-Optimal Solutions 

To get the optimal energy savings while guaranteeing the deadline of a soft real-time task is met we should 

delay the total execution time until it reaches the deadline, that is,  
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The problem to solve is comprised of the total energy function (1) and the time constraint (2) and the total 

energy is a function of not only the processor clock frequency but also the memory clock frequency. This 

formula can be considered as a generic form extending [5] in that we make an effort to employ much more 

chances to power down for the optimal energy savings. Since the total system-wide energy depends on both the 

processor frequency and the memory frequency and is a convex function of these two variables we can derive 

the energy-optimal frequencies by the equations 0=∂∂ ct fE  and 0=∂∂ mt fE . By solving these two 

equations simultaneously we can find the optimal-energy frequency pair ( cf , mf ).  

 

 

 

 

 

 

 



IV. EXPLORING THE FEASIBLE FREQUENCY SPACE 

In Section III, we derived analytical system-wide energy-optimal frequency equations reflecting variation of 

both the processor frequency and the memory frequency. The closed optimal solution can be obtained by solving 

of high degree simultaneous nonlinear equations. However, this is very complex and incurs large computational 

overhead, and hence this method is not suitable for online voltage scheduling in actual embedded systems . 

Therefore, instead of a closed solution we intend to explore the solution space extensively to comprehend the 

impacts on the energy-optimal frequency pair from variable system behaviour parameters and memory access 

parameters, and propose a practical memory-aware DVS method based on searching the energy-optimal feasible 

frequency space. 

 

1. Exploring the Energy-Optimal Frequency Space 

The energy-optimal frequency solution is very likely to vary depending on a used energy model, as is seen in 

the motivational example. In other words, the feasible  solution space itself is  changeable depending on the 

memory clock frequency as well as the degree of DPM on external memory devices, memory energy 

consumption models, memory access patterns, etc. Therefore, we will explore transition of the optimal solution 

space while altering several variable parameters in the proposed memory energy model of Section III. 

First, we assumed the target system consists of a 32-bit RISC processor whose frequency can vary between 

[100Mhz, 400Mhz] and an SDRAM device with a maximum frequency of 100Mhz. And then, we got memory 

traces with Simplescalar-ARM available from the University of Michigan [9] for an MPEG-4 decoder selected 

as a target soft real-time application. While the MPEG decoder ran carphone.mp4 with 33 ms/frame on this 

simulator, we profiled memory traces and built an exponential model based on the traces, which has 5488.23ns 

as average interarrival time. The energy consumption or power dissipation values of an SDRAM device from [5] 

were used. Table 1 summarizes all the basic parameters of the SDRAM device model, the memory access model, 

and so on. Here, we assume the memory access time to be 60 ns because this value is a usually baseline speed 

for SDRAM devices.  

We investigated the frequency space with the processor frequency and the memory frequency varying with 

regard to the threshold, the average interarrival time, the processor execution cycles with cache hits , and the 

number of memory accesses. The parameters in Table 1 were basically applied to all the simulations except the 

very varying parameter whose impact should be observed. 



Table 1. Basic experimental parameters 

EIA 110.8 (nJ/access) EAI 15.8 (nJ/access) 

EII 3.14 (nJ/cycle) EIP  0 

EPI 0 PAS 0.151 (W) 

PIS 0.072 (W) PPS 0.0116 (W) 

tacc 60 (ns) tth 300 (ns) 

Mb 9 fm, max 100 (Mhz) 
2kCcα  17101 −×  (nJ/hz2) Nc 

610097 ×.  (cycles) 

K 2,755 λ/1  5488.23 (ns) 

 

Fig. 4 shows the transition of the energy-optimal point in the frequency space while the threshold tht  is 

changed. In Fig 4, the left upper graph shows the energy-optimal frequency space when the previous DVS 

method of [5] is applied. The right upper, the left lower, and the last remaining graph show the frequency spaces 

of the proposed DVS method respectively with 10µs, 1 µs, and 300ns as tht . The graph of the previous method 

can be regarded as a special case of the proposed method with tht =∞. In other words, our energy model is a 

generic version of the previous energy model and the powe rdown state is never entered before the slack time 

occurs in the previous model. As tht  becomes smaller we can notice that the total energy becomes a convex 

function of only the processor frequency.  

 

Fig. 4. Variation of the energy-optimal frequency space with the threshold changed 



 

Fig. 5. Variation of the energy-optimal frequency space with the average interarrival time changed 

 

 

Fig. 6. Variation of the energy-optimal frequency space with the processor cycles changed 



 

Fig. 7. Variation of the energy-optimal frequency space with the memory access count changed 

 

The solid lines in the whole graphs of Fig. 4 show the relation between the processor frequency and the 

memory frequency meeting the deadline constraint of eq. (2) as shown in the motivational example. Therefore, 

we also notice that the feasible frequency solution meeting the deadline is also moved from about (235 Mhz, 10 

Mhz) to (220 Mhz, 55 Mhz) roughly when the left upper and the right lower graph are compared. This is caused 

by a lot of reduction in the static memory energy consumption due to adjustment of the threshold time which 

decides when the memory device should enter the powerdown state. 

While variation of the threshold can be considered as direct control of the degree of DPM, the remaining 

parameters are rather related with adjusting the execution behaviours of the target task. Assuming the threshold 

is already decided, by inspecting relation between the energy-optimal frequency space and these parameters we 

can get some hints to obtain a close-to-energy-optimal frequency solution available in an actual embedded 

platform. Fig. 5 shows the movement of the energy-optimal frequency space with the average interarrival time  

λ/1  changed. Except the graph of the original frequency space the other graphs don’t seem changed much. This 

indicates DPM on the memory device is well applied by a proper threshold already and the interarrival time may 

affect not the shape of the contours but the optimal value of the total energy while keeping the shape. In Fig. 6, 

we notice that the processor execution cycle affects the feasibility of the energy-optimal pair keeping the shape 



of the space like a case of the interarival time. This is because the processor execution cycle influences directly 

the limit  of the processor frequency, the amount of the processor energy and the static memory energy in eq. (1) 

and (2). For the varying count of memory accesses, as shown in Fig. 7, when the count is small the space looks 

like a convex function of only a the processor frequency due to many chances to power down. But, when the 

count is large in the lower right graph the minimum property appears again. This can be attributed to the 

insufficient opportunities to be power downed. 

 

2. Practical Memory-Aware DVS Method 

Now we propose a simple but practical memory-aware DVS method based on profiling energy-optimal 

feasible frequency space with memory access pattern parameters varying off-line. Our method is inspired by an 

event-driven, cruising DVS mechanism per process in [10].  

First, we precompute a cubic table whose contents are the energy-optimal feasible frequency pairs off-line. 

Among the observed parameters in Section III, we select three factors, λ/1 , 
cN , and K which govern the system 

behaviour and model memory accesses  because we assume the threshold is already decided. Actually, the used 

threshold value is 300ns. While meeting the deadline and bounds of each frequency we build a table for the 

parameters within proper ranges by specified step sizes. λ/1  varies from 300  to 6,000 ns with 20 steps, 
cN  and 

K does from 5104×  to  6108×  with 20 steps and from 2,000 to 42,000 with 5 steps respectively. Then, we obtain 

an energy-optimal frequency pair using the precomputed table with λ/1 , 
cN , and K predicted for the next 

interval and can scale the processor frequency and the memory frequency. The overall procedure of our heuristic 

method is shown in Fig. 8. 

To verify performance of our heuristic DVS method we assume that the predicted parameters of the next 

frame of the MPEG-4 program should be as follows: λ/1 , 
cN , and K belongs to [5400ns, 5700ns], [2000, 

12000], and [ 51086 ×. , 61027 ×. ] respectively. Real values of these parameters are shown in Table 1. After we get 

the frequency pairs from the table using the indices mapped in two sets of the bound values of the above 

parameters, we just interpolate the frequency pairs to obtain the energy-optimal frequency solution for the next 

frame. If the size of the precomputed table becomes large, that is, the step sizes of variable parameters are 

increased, we will obtain a more accurate energy-optimal frequency solution. But this  requires more  

computational and spatial overhead.  
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Fig. 8. Procedure of a practical memory-ware DVS method 

 
Table 2. Energy-optimal frequencies and energy consumption 

DVS method fc(Mhz) fm(Mhz) Ec(μJ) Em(μJ) Et(μJ) Energy saving 
rate (%) 

Non-DVS 400 100 11,344 7,400 18,744 0 

221 51 3,463 7,872 11,335 38.4 
Previous [5] 

235 9 3,916 3,788 7,704 58.9 

221 51 3,463 957 4,420 76.4 
Proposed 

235 9 3,916 1,148 5,064 72.9 

 

In Table 2, a pair of the processor frequency and the memory frequency, (235Mhz, 9Mhz) is the feasible  

energy-optimal solution of the previous method of [5]. (221Mhz, 51Mhz) represents the feasible frequency pair 

of the proposed practical method. As can be expected from the observation in Section III, we notice the optimal 

energy frequency pair is  moved to around fc = 221Mhz and fm = 51Mhz in comparison with the previous method. 

We also notice energy saving rates are much higher than those by the previous method. This is because a low 

processor frequency allows more chances to transition the memory into the lower power state due to the 

threshold-based DPM mechanism in our method in contrast to the previous method and static memory energy is 

much saved, and decrease of the processor energy consumption due to the low processor speed makes a direct 

effect on the total energy consumption. This result confirms again that when the threshold and other memory 

behavioural parameters are varied the energy-optimal frequency pair moves from the point obtained by the 

previous DVS method to another point found by the proposed DVS method. Therefore, our method can find a 

much more energy-efficient frequency pair than the previous method. 



V. CONCLUSIONS 

For modern embedded microprocessors with variable memory clock frequency as well as CPU clock 

frequency, a memory-aware DVS heuristic is necessary.  In order to develop such a system-wide heuristic, we 

explored the energy-optimal frequency pair space using an MPEG-4 application. 

The main result of our analytical study is that the optimal frequency pair for a given system can vary 

significantly depending on the degree of DPM energy saving. In particular, we showed how the optimal 

frequency pair changes to a more close-to-optimal one using our DVS technique with a threshold changed. We 

also proposed a simple but practical memory-aware DVS heuristic which saves more than 34% energy 

consumption over the existing method. 
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