
Cgroup++: Enhancing I/O Resource Management of Linux
Cgroup on NUMA Systems with NVMe SSDs

Junghi Min, Sungyong Ahn, Kwanghyun La, Wooseok Chang

 SW R&D Center, Device Solutions, Samsung Electronics Co., Ltd.
Seoul, Korea

{junghi.min, sungyong.ahn, nala.la, wooseok_chang}@samsung.com

Jihong Kim

Dept. of CSE, Seoul National University,
 Seoul, Korea

jihong@davinci.snu.ac.kr

ABSTRACT

For container-based virtualization such as Linux container (LXC),

efficient and proportional resource sharing is an important design

requirement. However, existing container resource management

techniques do not adequately meet this requirement on modern

server machines, especially NUMA machines with NVMe SSDs.

In this paper, we propose an efficient proportional-share Linux

Cgroup, called Cgroup++, for container-based virtualization.

Unlike Cgroup, Cgroup++ takes into account of the storage

asymmetry of modern NUMA machines in managing storage I/O

requests. By exploiting the storage asymmetry in scheduling CPU

cores for a given Cgroup instance, Cgroup++ improves the I/O

performance of the Cgroup instance. Cgroup++ also supports

proportional I/O sharing among multiple Cgroup instances using a

weight-based throttling scheme in the I/O throttling layer for the

NVMe SSDs.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Allocation/deallocation strategies

General Terms Management, Performance

Keywords
Linux container, Cgroup, proportional sharing, NUMA scheduling,

storage asymmetry

1. INTRODUCTION
As container-based virtualization gets more widely employed on

modern server systems such as NUMA machines with NVMe

SSDs, however, managing host system resources fairly as well as

efficiently among multiple containers becomes more difficult

because of various asymmetric configurations of NUMA

machines. Figure. 1 shows an overall organization of a storage-

asymmetric NUMA machine, the Dell R920 machine, which was

used for our experimental evaluations. As shown in Figure. 1, the

Dell R920 is a storage-asymmetric NUMA machine because an

NVMe SSD is directly attached to node 0 only. A remote NVMe

SSD access from node 1 takes about 24% more time than a local

storage access from node 0.

We assume that LXC is used for container-based virtualization in

this paper. In LXC, which allows multiple Linux instances (called

as containers) to run on a single host, each container is custom-

configured by Linux Control group (Cgroup). Since multiple

containers with different service requirements can compete for

shared resources, proportional resource sharing is an important

requirement for container-based virtualization. Furthermore,

proportional I/O sharing becomes more important with recent high

I/O bandwidth NVMe SSDs. However, the current Cgroup does

not adequately handle the storage asymmetry problem on our

target NUMA machine and does not support the proportional I/O

sharing for NVMe SSDs.

In this paper, we propose an enhanced version of Cgroup, called

Cgroup++, which overcomes the current limitations of Cgroup on

storage asymmetric NUMA machines. Cgroup++ is different from

the existing Cgroup in two aspects. First, Cgroup++ improves the

CPU core allocation scheme of Cgroup by explicitly considering

storage asymmetry of our target NUMA machines so that

proportional storage sharing and high I/O bandwidth can be

simultaneously achieved. Second, Cgroup++ supports

proportional I/O sharing based on a weight-based throttling

scheme to NVMe SSDs. In order for each container to share a

proper portion of the total I/O bandwidth, our proposed scheme

allocates a specific credit periodically to each Cgroup instance

according to its I/O bandwidth requirement defined by an I/O

weight and throttles I/O service for the Cgroup instance once the

allocated credit for a period is completed consumed. Our

experimental results show that Cgroup++ can improve the I/O

bandwidth by up to 19% over Cgroup while proportionally

distributing the requested I/O bandwidth share of each container.

2. LIMITATIONS OF LINUX CGROUP ON

STORAGE-ASYMMETRIC MACHINES
 The Cpuset subsystem of Cgroup is used to make a bundle of

CPU cores, memory nodes, and tasks. For a given Cgroup

instance, the current Cpuset bundling scheme, which is storage

asymmetry-oblivious, simply reserves the required number of

CPU cores. Although this simple scheme works reasonably well

with CPU cores in UMA (Uniform Memory Access) systems with

identical storage access times, it doesn’t work well with a storage-

asymmetric NUMA machine as shown in Figure. 2. In order for a

task allocation scheme to work properly on storage-asymmetric

NUMA machines, it must be able to avoid costly remote storage

accesses when necessary. However, the default Linux task

scheduler has no concept of storage asymmetry, thus making it

very difficult to prevent costly remote accesses from occurring for

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the

Owner/Author.

Copyright is held by the owner/author(s).

Middleware Posters and Demos '15, December 07-11 2015, Vancouver, BC,

Canada

ACM 978-1-4503-3729-8/15/12.

http://dx.doi.org/10.1145/2830894.2830901

SSD

node 1

memory

node 2 node 3

node 0
local access

remote access

0
20
40
60
80

100
120

N
o

rm
al

iz
ed

 I
/O

b
an

d
w

id
th

 (
%

)

AC-L* AC-R*

100
90

76

SR*
*AC-L: All CPU cores on Local node

 SR: CPU cores on Single Remote nodes

 AC-R: All CPU cores scattered through Remote nodes

Figure 1. An example of

storage-asymmetric systems.

Figure 2. An impact of CPU

core allocation schemes.

http://dx.doi.org/10.1145/2830894.2830901

a given task or a given container.

Another limitation of Linux Cgroup is related to NVMe interface,

new high-performance storage interface for PCI Express (PCIe)

based SSDs which provides the maximum 64K hardware queues.

In order to support NVMe interface, the Linux kernel (since v3.19)

has been modified as well to implement a multi-queue block layer

over the existing single-queue block layer [4]. However, because

Cgroup supported proportional I/O sharing inside the CFQ I/O

scheduler [1] for the single-queue block layer only, no

proportional I/O sharing is natively supported for NVMe SSDs in

Linux. Figure. 3 shows that how current Cgroup handles

proportional I/O sharing for NVMe SSDs among four containers.

In this preliminary experiment, we set the I/O weights of four

containers to 1000, 500, 250, and 100, respectively. However, as

shown in Figure. 3, the current Cgroup does not satisfy the

requested I/O proportionality for the containers.

3. PROPORTIONAL STORAGE SHARING

SCHEME FOR NVME SSDs
Since CPU cores on the local node can access NVMe SSDs faster

than CPU cores on the remote nodes, if CPU cores on the local

node were assigned to a single container, it becomes difficult to

support I/O proportionality in an efficient fashion. Therefore,

when we create a container, we distribute CPU cores on the local

nodes to different containers according to the requested number of

CPU cores for each container. Figures 4(a) and 4(b) depict an

example of distributing local node CPU cores for a container and

the task assignment phase of the proposed task scheduler,

respectively.

As explained in Sec. 2, since Linux Cgroup does not support

proportional I/O sharing for NVMe SSDs, we added a weight-

based throttling scheme to the Linux Cgroup I/O throttling layer.

In order to support proportional storage sharing, we assign credits

to cgroups based on their I/O weight and throttle I/O requests of

the cgroup having no available credit until next replenish period.

The credits of a cgroup indicate the total number of sectors that all

the tasks in the cgroup can request within the specific period. The

credit calculation and allocation mechanism is designed based in

CFQ I/O scheduler. Because all cgroups in the system share the

TotalCredit (the sum of credits assigned to all cgroup instances)

according to their I/O weight, proportionality can be achieved.

Moreover, work conserving is achieved by adjusting TotalCredit

to storage bandwidth periodically. I/O service rate of each cgroup

is monitored and TotalCredit is recalculated to prevent the spare

bandwidth of storage devices.

4. EXPERIMENTAL RESULTS
The proposed Cgroup++ was implemented in Linux kernel v4.0.4

and evaluated on a Dell R920 machine. The Dell R920 machine

consists of four NUMA nodes, and each NUMA node has 24 x86

CPU cores. We configured the Dell R920 machine to have four

Samsung XS1715 NVMe SSDs and all four SSDs are connected

to the PCIe slots of a single node only. Our test environment setup

reflects a typical NUMA machine [2]. FIO benchmark program is

used as task applications.

We varied the number of FIO threads from 96 to 192 so that we

can compare the efficiency of our scheduler over different I/O

intensiveness. Each FIO thread performs 4-KB random reads for

10 minutes. As shown in Figure. 5, the proposed task scheduler of

Cgroup++ increases the I/O bandwidth by 14% and 19% over

Cgroup when the container used 144 FIO threads and 192 FIO

threads, respectively.

In order to evaluate the effect of proportional I/O sharing of

Cgroup++, Figure. 6 compares normalized I/O bandwidth results

of four containers which has same configuration as Sec. 2. The

result shows that weight-based throttling scheme of Cgroup++

allocates the portion of I/O bandwidth very accurately following

the required proportional shares of four containers. Furthermore,

we can observe that there is little wasted I/O bandwidth to support

proportional sharing. It indicates Cgroup++ achieves work

conserving property as well as proportional I/O sharing.

5. CONCLUSIONS
We have presented an improved version of Cgroup, called

Cgroup++, which supports efficient proportional storage sharing

for container-based virtualization on modern NUMA machines

with NVMe SSDs. The key insight behind our proposed

Cgroup++ is to make storage asymmetry of modern NUMA

machines explicit, so that this storage asymmetry is taken account

of managing host I/O resources for containers..

6. REFERENCES
[1] Axboe, J., Linux block IO - present and future, in Proc. of

Ottawa Linux Symp, 2004.

[2] Intel Motherboard Hardware v2.0.

http://www.opencompute.org/assets/download/Open-

Compute-Project-Intel-Motherboard-v2.0.pdf.

[3] Lepers, B., Quéma, V., and Fedorova, A., Thread and

Memory Placement on NUMA Systems: Asymmetry Matters,

in Proc. of the USENIX Conference on USENIX Annual

Technical Conference, 2012.

[4] Bjørling, M., Axboe, J., Nellans, D., and Bonnet, P., Linux

block IO: introducing multi-queue SSD access on multi-core

systems, in Proc. of the 6th International Systems and

Storage Conference, 2013

N
o

rm
al

iz
ed

 I
/O

b
an

d
w

id
th

 (
%

)

100

50
25

10

100 98 103 98

0
20
40
60
80

100
120

C1 C2 C3 C4

I/O weight
Cgroup

C: Container
Figure 3. Disproportional I/O resource sharing of Cgroup.

1

Cpuset C
Cpuset B
Cpuset A

SSD

node 1

memory

node 2 node 3

node 0

task

task

task

task

Has free

capacity?

I/O-

intensive?

Sche-

duler

(a) An example of distributing

CPU cores of the local node

 (b) An example of CPU allocation

 under the proposed task scheduler

Figure 4. CPU allocation and task scheduling of Cgroup++.

103
114 119

0
20
40
60
80

100
120

Cgroup Cgroup++

96 144 192
Number of FIO threads

N
o
rm

al
iz

ed
 I

/O

p
er

fo
rm

an
ce

 (
%

)

N
o
rm

al
iz

ed
 I

/O

b
an

d
w

id
th

 (
%

)

100

50
25

10

100

54

27
11

0
20
40
60
80

100
120

C1 C2 C3 C4

I/O weight Cgroup++

C: Container
Figure 5. A comparison of I/O

performance.

Figure 6. Proportional I/O

sharing of Cgroup++.

