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ABSTRACT 

For container-based virtualization such as Linux container (LXC), 

efficient and proportional resource sharing is an important design 

requirement. However, existing container resource management 

techniques do not adequately meet this requirement on modern 

server machines, especially NUMA machines with NVMe SSDs. 

In this paper, we propose an efficient proportional-share Linux 

Cgroup, called Cgroup++, for container-based virtualization. 

Unlike Cgroup, Cgroup++ takes into account of the storage 

asymmetry of modern NUMA machines in managing storage I/O 

requests. By exploiting the storage asymmetry in scheduling CPU 

cores for a given Cgroup instance, Cgroup++ improves the I/O 

performance of the Cgroup instance. Cgroup++ also supports 

proportional I/O sharing among multiple Cgroup instances using a 

weight-based throttling scheme in the I/O throttling layer for the 

NVMe SSDs. 

Categories and Subject Descriptors 
D.4.2 [Storage Management]: Allocation/deallocation strategies 

General Terms Management, Performance 

Keywords 
Linux container, Cgroup, proportional sharing, NUMA scheduling, 

storage asymmetry 

1. INTRODUCTION 
As container-based virtualization gets more widely employed on 

modern server systems such as NUMA machines with NVMe 

SSDs, however, managing host system resources fairly as well as 

efficiently among multiple containers becomes more difficult 

because of various asymmetric configurations of NUMA 

machines. Figure. 1 shows an overall organization of a storage-

asymmetric NUMA machine, the Dell R920 machine, which was 

used for our experimental evaluations. As shown in Figure. 1, the 

Dell R920 is a storage-asymmetric NUMA machine because an 

NVMe SSD is directly attached to node 0 only. A remote NVMe 

SSD access from node 1 takes about 24% more time than a local 

storage access from node 0.  

We assume that LXC is used for container-based virtualization in 

this paper. In LXC, which allows multiple Linux instances (called 

as containers) to run on a single host, each container is custom-

configured by Linux Control group (Cgroup). Since multiple 

containers with different service requirements can compete for 

shared resources, proportional resource sharing is an important 

requirement for container-based virtualization. Furthermore, 

proportional I/O sharing becomes more important with recent high 

I/O bandwidth NVMe SSDs. However, the current Cgroup does 

not adequately handle the storage asymmetry problem on our 

target NUMA machine and does not support the proportional I/O 

sharing for NVMe SSDs. 

In this paper, we propose an enhanced version of Cgroup, called 

Cgroup++, which overcomes the current limitations of Cgroup on 

storage asymmetric NUMA machines. Cgroup++ is different from 

the existing Cgroup in two aspects. First, Cgroup++ improves the 

CPU core allocation scheme of Cgroup by explicitly considering 

storage asymmetry of our target NUMA machines so that 

proportional storage sharing and high I/O bandwidth can be 

simultaneously achieved. Second, Cgroup++ supports 

proportional I/O sharing based on a weight-based throttling 

scheme to NVMe SSDs. In order for each container to share a 

proper portion of the total I/O bandwidth, our proposed scheme 

allocates a specific credit periodically to each Cgroup instance 

according to its I/O bandwidth requirement defined by an I/O 

weight and throttles I/O service for the Cgroup instance once the 

allocated credit for a period is completed consumed. Our 

experimental results show that Cgroup++ can improve the I/O 

bandwidth by up to 19% over Cgroup while proportionally 

distributing the requested I/O bandwidth share of each container.  

2. LIMITATIONS OF LINUX CGROUP ON 

STORAGE-ASYMMETRIC MACHINES 
 The Cpuset subsystem of Cgroup is used to make a bundle of 

CPU cores, memory nodes, and tasks. For a given Cgroup 

instance, the current Cpuset bundling scheme, which is storage 

asymmetry-oblivious, simply reserves the required number of 

CPU cores.  Although this simple scheme works reasonably well 

with CPU cores in UMA (Uniform Memory Access) systems with 

identical storage access times, it doesn’t work well with a storage-

asymmetric NUMA machine as shown in Figure. 2. In order for a 

task allocation scheme to work properly on storage-asymmetric 

NUMA machines, it must be able to avoid costly remote storage 

accesses when necessary. However, the default Linux task 

scheduler has no concept of storage asymmetry, thus making it 

very difficult to prevent costly remote accesses from occurring for 
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Figure 1. An example of 

storage-asymmetric systems. 

Figure 2. An impact of CPU 

core allocation schemes.  
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a given task or a given container. 

Another limitation of Linux Cgroup is related to NVMe interface, 

new high-performance storage interface for PCI Express (PCIe) 

based SSDs which provides the maximum 64K hardware queues. 

In order to support NVMe interface, the Linux kernel (since v3.19) 

has been modified as well to implement a multi-queue block layer 

over the existing single-queue block layer [4]. However, because 

Cgroup supported proportional I/O sharing inside the CFQ I/O 

scheduler [1] for the single-queue block layer only, no 

proportional I/O sharing is natively supported for NVMe SSDs in 

Linux. Figure. 3 shows that how current Cgroup handles 

proportional I/O sharing for NVMe SSDs among four containers. 

In this preliminary experiment, we set the I/O weights of four 

containers to 1000, 500, 250, and 100, respectively. However, as 

shown in Figure. 3, the current Cgroup does not satisfy the 

requested I/O proportionality for the containers.  

3. PROPORTIONAL STORAGE SHARING 

SCHEME FOR NVME SSDs 
Since CPU cores on the local node can access NVMe SSDs faster 

than CPU cores on the remote nodes, if CPU cores on the local 

node were assigned to a single container, it becomes difficult to 

support I/O proportionality in an efficient fashion. Therefore, 

when we create a container, we distribute CPU cores on the local 

nodes to different containers according to the requested number of 

CPU cores for each container. Figures 4(a) and 4(b) depict an 

example of distributing local node CPU cores for a container and 

the task assignment phase of the proposed task scheduler, 

respectively.  

As explained in Sec. 2, since Linux Cgroup does not support 

proportional I/O sharing for NVMe SSDs, we added a weight-

based throttling scheme to the Linux Cgroup I/O throttling layer. 

In order to support proportional storage sharing, we assign credits 

to cgroups based on their I/O weight and throttle I/O requests of 

the cgroup having no available credit until next replenish period. 

The credits of a cgroup indicate the total number of sectors that all 

the tasks in the cgroup can request within the specific period. The 

credit calculation and allocation mechanism is designed based in 

CFQ I/O scheduler. Because all cgroups in the system share the 

TotalCredit (the sum of credits assigned to all cgroup instances) 

according to their I/O weight, proportionality can be achieved. 

Moreover, work conserving is achieved by adjusting TotalCredit 

to storage bandwidth periodically. I/O service rate of each cgroup  

is monitored and TotalCredit is recalculated to prevent the spare 

bandwidth of storage devices. 

4.  EXPERIMENTAL RESULTS 
The proposed Cgroup++ was implemented in Linux kernel v4.0.4 

and evaluated on a Dell R920 machine. The Dell R920 machine 

consists of four NUMA nodes, and each NUMA node has 24 x86 

CPU cores. We configured the Dell R920 machine to have four 

Samsung XS1715 NVMe SSDs and all four SSDs are connected 

to the PCIe slots of a single node only. Our test environment setup 

reflects a typical NUMA machine [2]. FIO benchmark program is 

used as task applications. 

We varied the number of FIO threads from 96 to 192 so that we 

can compare the efficiency of our scheduler over different I/O 

intensiveness. Each FIO thread performs 4-KB random reads for 

10 minutes. As shown in Figure. 5, the proposed task scheduler of 

Cgroup++ increases the I/O bandwidth by 14% and 19% over 

Cgroup when the container used 144 FIO threads and 192 FIO 

threads, respectively. 

In order to evaluate the effect of proportional I/O sharing of 

Cgroup++, Figure. 6 compares normalized I/O bandwidth results 

of four containers which has same configuration as Sec. 2. The 

result shows that weight-based throttling scheme of Cgroup++ 

allocates the portion of I/O bandwidth very accurately following 

the required proportional shares of four containers. Furthermore, 

we can observe that there is little wasted I/O bandwidth to support 

proportional sharing. It indicates Cgroup++ achieves work 

conserving property as well as proportional I/O sharing.  

5. CONCLUSIONS 
We have presented an improved version of Cgroup, called 

Cgroup++, which supports efficient proportional storage sharing 

for container-based virtualization on modern NUMA machines 

with NVMe SSDs. The key insight behind our proposed 

Cgroup++ is to make storage asymmetry of modern NUMA 

machines explicit, so that this storage asymmetry is taken account 

of managing host I/O resources for containers.. 
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Figure 3. Disproportional I/O resource sharing of Cgroup. 

1

Cpuset C
Cpuset B
Cpuset A

SSD

node 1

memory

node 2 node 3

node 0

 

task

task

task

task

Has free 

capacity?

I/O-

intensive?

Sche-

duler

 
(a) An example of distributing 

CPU cores of the local node 

 (b) An example of CPU allocation    

  under the proposed task scheduler 
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performance. 

Figure 6. Proportional I/O 

sharing of Cgroup++. 


