GRAPHICAL MODELS AND IMAGE PROCESSING
Vol. 57, No. 2, March, pp. 175-182, 1995

NOTE

Efficient 2-D Convolution Algorithm with the Single-Data
Multiple Kernel Approach

JivonG KiM -

Department of Computer Science and Engineering, FR-35, University of Washingion, Seattle, Washington 98195

AND

YongMINn KiMm

Department of Electrical Engineering, FT-10, University of Washington, Seatile. Washington 98195

Receiving January 24, 1994; revised December 22, 1994; accepted December 30, 1994

A fast implementation of convolution operation is described.
The implementation takes advantage of various properties of
commonly used kernels. First, the kernel elements are analyzed
and rearranged, grouping the kernel elements of the same abso-
lute value together and arranging trivial multiplication cases sepa-

rately. Then the sequence of computing convolution sums is modi- -

fied so that all the kernel elements could be multiplied by the same
data element at each step. This new algorithm significantly re-
duces the number of multiplication operations for most widely
- used kernels. Qur experiment shows that the performance im-

g provement of two to seven over the direct implementation is

achievable for most kernels. The required overhead (extra mem-
ory and preprocessing) is proportional to the kernel size and is
negligible. © 1995 Academic Press, inc.

1. INTRODUCTION

Convolution operations are widely used as an effective
tool for detecting features (such as points, lines, or
edges), smoothing noises, and sharpening image details.
The common difficulty of implementing the convolution
algorithm has been its large computational requirements.
For example, in order to convolve a 512 x 512 image with
a5 x 5 kernel, over 13 million multiplications and addi-
tions are necessary. Since convolution operations are
usually employed in the preprocessing or early process-
ing stage of many image processing, image analysis, and
computer vision tasks, the support for fast convolution
operations is quite valuable in order for a whole task to be
completed without excessive delay. When real-time re-
sponses are necessary, a hardware convolver with the
necessary supporting chips could be used. Many dedi-

cated convolver chips have been developed for this pur-
pose. For example, the LSI Logic’s L64240 8 x 8 multi-
bit finite impulse response (FIR) filter chip can convolve
images very fast [1]. Many image processors (IPs) and
digital signal processors (DSPs) such as .Texas Instru-
ments’ TMS320 series have been developed and used to
speed up the convolution operations as well [2-4].
With the advartces in device technology and computer
architecture, convolution operations on the general-pur-

pose workstations are getting more practical, though they

could not be done in real time [5]. For the software-only
implementation there are several implementation tech-
niques available to reduce the number of arithmetic oper-
ations. If a kernel is separable, 2-D convolution could be
implemented by applying two consecutive 1-D kernels.
The separable kernel approach could achieve a consider-
able speed-up over the direct implementation especially
when the kernel size is large [6]. The number of separable
kernels, however, is rather limited. If the implementation
is specially optimized for a specific kernel, convolution
computation could be made more efficient. For example,
if all the kernel eléments had a value of 1, the box-filter or
moving average method would work [7]. However, these
techniques are not generally applicable; thus they are not
useful in implementing convolution operations when ker-
nels are not known in advance. In this paper, we describe
a fast generalizable convolution algorithm.

We consider p X p square kernels. It is convenient to
assume that p is an odd number and to denote g = (p —
1)/2. Let A be an n X ' matrix input image and K be an
p X p matrix kernel, where n, m > p. Then for all i, j
satisfyingg<i=n-—qgandg<j<nm-gq, letA,,bethe
p X p square submatrix of A centered in A[i, j]. We say

178

. 1077-3169/95 $6.00
Copyright © 1995 by Academic Press, Inc,
All rights of reproduction in any form reserved.

176

that an output # X m matrix B is a discrete convolution of
A with the kernel K:

Bli.jl= > Ay lk UOKlp—k+lLp—1+1L D

{<ikd=p

The boundary elements can be treated as a special case or
ignored. The direct implementation of convolution opera-
tions would require p? multiplications and p* additions for
each convolved element.

Our algorithm takes advantage of various properties of
commonly used kernels. For most of the kernels we
tested, we were able to achieve a specd-up factorof 2to 7
over the direct implementation. Section 2 reports the
analysis results for the commonly used kernels while our
algorithm is presented in Section 3. The implementation
and performance measurements are described in Sec-
tion 4.

2. ANALYSIS OF COMMONLY USED KERNELS

We examined 165 commonly used kernels in various
image processing applications. The kernels were col-
lected from different sources including several image pro-
cessing textbooks {8-11] and image processing systems
[12, 13]. They include most kernels used for edge en-
hancement (e.g., Sobel, Laplacian, and Prewitt} and for
spatial domain filtering (e.g., high-pass filter, low-pass
filter, and unsharp masking). Figure 1 shows several ex-

i ‘amples of the kernels selected. Several interesting prop-

. A -
. erties of these kernels are summarized ‘below. .

Property 1. For most kernels, the number of distinct
kernel elements is low.)

Property 2. 0, 1, and —1 are used frequently.

a b
o1 g2l
ilalo 12 ¢
c
B[O & D B 8=0014212
AR WA W3 C =0.034570
D =0.204540
-BI-D{-E| -D} -B] E = 0497527
A B|C| B A 2=00

FIG. 1. Example kemnels: (2) 3 x 3 gradient kernel (grad_ [35_de-
grees), (b).3 x 3 Sobel operator (sobelx), and (¢} § X § Argyle's kernel
(arg-0.75.h).

KIM AND KIM

Property 3. Many kernel elements have the same ab-

solute values.

Table 1 lists the analysis results of some of the kernels
we examined. Property | can be verified by comparing
the number of total kernel elements Ny column to the
number of distinct kernel elements Nyina column in Ta-
ble 1. For example, a 3 X 3 gradient kernel (Fig. la) has
only three distinct kernel elements. Property 2 is gener-
ally more evident in the integer kernels, though the float-
ing-point (or floating) kernels use 0's fairly frequently as
well. A 3 x 3 Sobel operator (Fig. 1b) has five distinct
kernel elements, but after ignoring the trivial elements (0,
1, and —1). there are only two diffcrent kernel elements
left. By comparing the Nywina column and Npowcivial
column (the number of distinct kernel elements excluding
0, 1, and —1) in Table 1, we can observe that a large
number of kernels have at least one kernet element with
the value of 0, 1, or ~1. About 80% of kernels out of 165
examined use at least onc of 0, I, or —1. Property 3 is the
direct result of the fact that many kernels are symmetric
or antisymmetric. For example, a 5 x 5 Argyle’s kernel
(Fig. 1c) has 10 nontrivially distinct kernel clements, but
considering the antisymmetry, there are only 5 kernel
elements having absolutely distinct values. Figure 2
shows the distributions of the number of absolutely dis-

TABLE 1 A
Analysis of Commonly Used Kernels

Typ& A Name Nlulul“ Ndmina'h Nlmnu'iwn!r Nabs-&hslhlc!d Nzcm’
"3x3 freichén-wy 9 1 6 0 0
grad_135_degrees 9 3 0 0 3
sobel_x 9 5 2 I 3
unsharp3x3 9 2 1 1 0
arg 0.5h 9 5 4 2 3
hpf_3_int 9 3 3 2 4
Ipf3 9- 3 3 3 0
_ pix.stack 9 9 8] 0
§$xX S5 boxcar-S—col 25 3 2 i S
, trunc_pyr S_tow 25 S 4 2 5
arg.0.75.h 25 i1 10 5 5
mar_0.6 25 6 M) 5 0
J mac.0.6v 25 13 12 6 5
7x7 bxc_7h 49 3 2 t 7
arg-1.0h 49 19 18 9 7
mar_0.8 49 10 10 10 0
dog_1.0v 49 25 24 12 7
mac_0.8h 49 28 24 12 7

4 Nywa = the number of total kernel elements.

5 Ngaina = the number of distinct kernel elements.

¢ Noomnvis = the number of distinct kernel clements excluding 0, 1,
and —L. '

4 N i = the number of kernel elements having distinct absolute
values excluding 0, 1, and —1.

* Niewo = the number of zero elements.

EFFICIENT 2-D CONVOLUTION ALGORITHM

177

50

40—

304

no. of kernels

20~

LD
Lol -

1 '

1
™~ a0 =

no. of absolutely disfinct kéme! elerents excluding 0,1 and -1

b

no. of kermnets

no, of absolutely distinct kernel elements excluding 0.1 and -1

)

c
4
=z 1
U
E
Q
-
Lo
[+]
o 2
=
| -
TR T T T T TT Y
¢ QN‘Q‘ODOQ&V\ODODNV\oooor:vtooooﬂwhocn
Tt e e NI NN M R N 7 T o
®

no. of absolutely distinet kerel elements excluding 0,1 and -|

FIG. 2. Distribution of N g among (2} 121 3 X 3 kernels, (b) 34 § X § kernels and (c) 10 7 X 7 kernels.

tinct kernel elements (Napsistinct) among 3 X 3,5 x S, and
7 X 7 kernels examined. As shown in Fig. 2, the distribu-
tions are heavily skewed toward small values.

Property 2 has been used in reducing the number of
multiplications in the direct implementation by skipping
multiplications between input pixels and a kernel element
which has a value of 0, I, or —1. Properties 1 and 3 have
the potential to reduce the number of multiplications fur-
ther. But, in the direct implementation, it is not easy 1o
utilize these properties efficiently, since pixel values be-
ing multiplied are generally different even though the ker-
nel elements are of the same value. We have devised a
new algorithm which takes full advantage of Properties
1-3. In our algorithm, the number of multiplications per
convolved element is reduced to the value of Nobs_distinct
from the total number of kernel elements N, and the
number of additions per convolved element is decreased
by the number of zero elements N,ero With O(p?) extra
memory.

3. SINGLE-DATA MULTIPLE KERNEL
CONVOLUTION ALGORITHM

In this section, we present an efficient convolution al-
gorithm which exploits the analysis results described in
the previous section. For the purpose of illustration, we
first consider the ‘case of I-D. Figure 3 shows the se-
quence of computations for the direct implementation of
the 1 X 3 convolution operation. Each step produces a
final convolved element for the current location. Since
the portion of an input sequence which is multiplied by
the kernel is changing with each step, we would not be
able to utilize Properties 1 and 3 described above.

Our algorithm is different from the direct implementa-
tion in two ways. First, each step computes partial sums
for the multiple locations. Once the first convolved ele-
ment is computed, each subsequent step produces a new
convolved element. Second, in each step, all the kernel
elements are multiplied by the same input data. We call

178 KIM AND KiM

Kems [LTET%]
Rt 12T
e [@] @ [@ & T %]
+ + r;{ﬂ
Ixcl +[xbl +ixn]
([[- [5
" = - [
siepi 3 stepli+l) | step(+2) | step (i+3) step (i+4)
Sl S e T ——

FIG. 3. Direct implementation of convolution operation.

our approach a single-data multiple kernel (SDMK) (i + 2)). and the computed partial sums are distributed to
method in order to emphasize that the algorithm works the appropriate locations. The SDMK approach could be
on a single pixel with the multiple kernel elements. Fig- easily modified to take full advantage of Properties 1-3,
ure 4 illustrates the key idea of the SDMK approach. since all of the kerne! elements are multiplied by the same
Each step works with a single pixel (e.g.. d3 forthe step data efement.

Original 5 © e -

Kemel . 2101 . . :
Reversed b

Reversed [T B]]

Input di a2 d3 d4 ds d6
o | I 1 1 1 1]

|
----- ——
" step (i+1) : O xel bt xbl | xe |
] t —t |
'''''' § [[iy |
* step (i+2) : l xc|! + IxE‘ !+| xa =
)] ¥ L
N | i1 |
step (i+3) = l qu l+ | xgl
————- e S
E B step (i+4) step (i+5)
Convolved ¥ Y [L L4
Sequence | 1 [T [1]

FIG. 4. Single-data muftiple kernel (SDMK) implementation of convolution operation.

EFFICIENT 2-D CONVOLUTION ALGORITHM

3.1

Figure 5 shows the steps involved in the 2-D SDMK
convolution algorithm. The complete description of the
convolution algorithm is given in Fig. 6 while Fig. 7 de-
scribes two auxiliary routines used in the implementation
of the SDMK algorithm. The algorithm consists of two
parts, The first part analyzes the kernel and rearranges it
for the SDMK processing. The analysis partitions the
kernel elements into groups based on their absolute val-
ues, and within each group, they are classified into two
lists: a positive list and a negative list. If the value of a
kernel element is positive, it is added to the positive list,
and if negative, it is added to the negative list. The lists
are maintained using standard linked list data siructures.
Each group is represented by a LinkedListHeader struc-
ture, which has three fields: a value v and two pointers,
PosPtr and NegPtr. The PosPir maintains the kernel
elements of value v, and the NegPtr points the list of the
kernel elements of value —v. For each kernel element,
we allocate a LinkedListElement structure with three
fields: xoffset, yoffset, and next. The xoffset and
yoffset fields contain the positional information of a ker-
nel element within the input kernel K. The reference
point for the xoffset and yoffset fields is the lower right
corner of the kernel, i.e., the kernel element in the lower
right corner of the kernel has 0 for both the xoffset and
yoffset fields. The kernel element in the upper-left corner
has —(p — 1) for both the xoffset and yoifset fields.
These fields are used to locate the appropriate location
when the partial sum is accumulated. The next field

Algorithm Description

". . points to the next kernel element having the same kernel

value. Two special pointers (OneList and MinusOne-

Kemel Analysis and Rearrangement

Decomposed Kernel

—

SDMK Processing

| Convolved Image l

FIG. §. Proceésing steps involved in the 2-D SDMK convolution
algorithm.)

179

List) to the linked lists are maintained as well. OneList
points to the kernel elements having a value of | and
MinusOnelist points to the kernel elements having a
value of —1.

After the kernel is analyzed and rearranged, the actual
convolution computation is performed next. For each
pixel Ali, j], the kernel value field Sorted Kernellil.v of
the LinkedListHeader array is multiplied by Al/, j1. The
multiplication result is added to the appropriate locations
of the convolution output image ConvolvedMairix de-
pending on the xoffset and yofiset values of the kernel
elements in both positive list SortedKernelli].PosPir and
negative list SortedKernelli]l. NegPtr. The convolution
output image ConvolvedMatrix is initialized to zero. For
the kernel elements in the linked lists pointed by OneList
and MinusOneList pointers, the multiplication step is
skipped. The zero kernel elements are automatically ex-
cluded from the computation, since they are not included
in any linked list in the first stage. Figure 8 shows the
result of the preprocessing steps with the 5 X 5 Argyle
kernel described in Fig. Ic.

3.2. Algorithm Analysis

The SDMK implementation requires Napsgising multi-
plications and p? — N, additions per each convolved
element. The number of multiplications is not dependent
on N, because the multiplication result is reused for all
the kernel elements in each linked list. Since we are ex-
cluding zero elements during the analysis stage, the num-
ber of additions is reduced 1o p? — Ny as well,

" The SDMK impléementation requires extra O(p?) time
and space in’order to preprocess the kernel clements and
maintain the sorted lists of kernel elements, but this over-
head is negligible compared with the convolution opera-
tion itself, since p? < nm. If memory is not a critical
resource of Napsdistinct Of @ kernel is very small, we could
further improve the SDMK implementation by using a
table lookup technique which is widely used in the imple-
mentation of multiplier-free signal processors [14]. We
could precompute the multiplications for all the possible
combinations of pixel and kernel values and store the
results in memory as a lookup table. If there are
Nabsdistiney absolutely distinct kernel elements and 24w
possible pixel values, we would need 024 N, gistinct)
extra memory, where dimage is the depth of an image in the
number of bits. For example, if there are two absolutely
distinct kernel elements (Nubsdisinn = 2), the input image
has 8 bits per pixel {dimaee = 8), and each multiplication
result requires 4 bytes (a single-precision floating-point
number) for storage, 2 Kbytes of lookup table memory
would be necessary. Once the lookup table is formed
after 24mee Ny gisines Multiplications, the convolution op-
eration could be performed with memory accesses and
additions only.

Single Data Multiple Kernel Convolution Algorithm

Given: an mun matrix A and a pxp kernel &
Find: an nxm convolved wmatrix B of a matrix A with a kernel N

begin

LinkedListHeader SortedK ernel{ MAXNOKERNELELMTS);
Each element Surted Kernel{i} of Sortedi ernet arcay maintains three fields: value v of a kernel element,
pointer o3 Ptr to the list of positive kernel elewents (value) and pointer Negltr to the list of negative
kernel elements (-value).

LinkedListPtr OneList, MinusOneList;
Onelist puints o the list of kernel elenents equal to 1 and MinusOnelist poiuts to the list of kernel elements
equal 1o -1,

Integer NoEhntsinSortedRernel
the number of kernel elemuents having the distinct absolute values excluding 0, 1 and -1

Matrix ConvolvedM atrix:
Convolved Matriz holds the convolntion reslts.

comment : Rearrange p* kernel clements such that all the kernel clements having the same
absolute values are grouped together.

for i:=1topstep | do
for j =l topstep 1 do
UpdateSortedListOfKernclElements(K (IR
od

od

comment : For each element Afi, 5] of a naatrix A multiply absolutely distinct kernel elements and
accumatate the partial sum into the appropriate clements of ConvolvedMatriz array.

for i := 1 to n step | do
for j := | tom step 1 do
if NotEmpty(Onelast) then AccumulatePartialSum(Aft, y], OneList, v, j); fi;
if NotEmpty{MinusOneList) then AccumulatePartialSum{- Ali. 3], OneList.i,j); fis
for k :=1 to NoElemtsinSortedKernel step 1 do
if NotEmpty(SortedKernel[k].PosPtr) then
AccumulatePartialSum(Afi, j} » SortedKerael {k].v. SortedKernel[k]. PosPtr.i.j) &
if NotEmpty{Sorted K ernellk] NegPtr) then
AccumulatePartialSum(— AL, j} * SortedKernel[k].v, Sorted K ernellk]).Negltr,4,5); &

end : .

FIG. 6. SDMK conyolutjon algorithm.

proc UpdateSortedListOfKernelElements(elnt. i 1} =
do if efmt = 0 then retura fi;
for k := | to NoEImtsinSortedKernel step 1 do
if elnt = | then UpdateQueList(); return fi
if elmt = —1 then UpdateMinusOneList(); return fi
if elmt = SortedR ernel{k].v then UpdatePosPtr{Sorted K ernet{k]); return
elsif elmt = —SortedKernel[k].v then UpdateNegPtr(Sorted K ernel[k]): return fi

od
AllocateNewLinkedListHeaderAndElement{elmi. 2, J);
NoElmtsInSortedK ernel := NoElmtsInSortedKernel + 1;
return

od.

proc AccumulatePartialSum(psum, ptrtolmkedhist, r,y) =
pir := ptrtolinkedlist;
while pir # NULL do
Xof fset := eptr.rof fset:
Yof fset .= sptr.yof fsect; :
ConvolvedMatriz|s + Xof fset.y + Yof fsct] = CanvoloedMatraer + Xof fseloy + Yof fset] + psunt:
ptr = sptr.aert;

od.
FIG. 7. Auxiliary routines for the SDMK convolution algorithm.

180

AT

EFFICIENT 2-D CONVOLUTION ALGORITHM

181

LinkedListHead LinkedListElement
l Sonc;l(e:'ne:[rﬂl‘ - Foffset : -4 0
- yolfset : 4 , -4
v: A next | NULL
PosPtr : 5
NegPur .._._.___.r‘b Q 0
- l NOLT
Sortediernel[1]:
P) oy -1 gt -4 iy
3 -4 4 -3 ' -3
o 1 NUEL
_’-]—.. -4 Fion fso -3 : -
-1 -1 0 ’ 0
— —] — NULL
SortedKernel{2]: SortedKernel[3}: SortedKemel{4]:
gy ~2 - -1 P Y]
-4 D ! -3 l -3 E -3
NULL — — NULL NULL
—d g 2 s 3 <1 Lt 2
0 -1 ’ -1 -1
NULL — NULL NULL

FIG. 8. Result of the preprocessing steps with the 5 x § Argyle kernel shown in Fig.

4. EXPERIMENT

We have implemented the. SDMK convolution algo-
rithm on SUN SPARCstation 10 using C programming
language. In order to compare the performance over the
direct implementation, we used the convolution routine
from the Khoros image processing system [12] which is
widely available and used.

We measured the execution time for both the integer
and floating-point kernels under the carefully controlled
measurement environment, and programs were compiled
using the GNU C compiler (gcc) with the optimization
option turned on. For each kernel, we made 1500 mea-
surements and adopted the average of 1500 values as the
execution time for the kernel. Since the performance of
the SDMK and direct convolution algorithms does not
depend on pixel values, a single 512 x 480 image was
used as an input image for all the convolution routines.

Tables 2 and 3 summarize the measurement results
with selected integer and floating-point kernels. Even
considering the several detailed implementation differ-
- ences between the SDMK and direct implementations
(e.g., how to compute the indexes for accessing both
kernels and image data), Tables 2 and 3 clearly show the
substantial performance increase with the SDMK imple-

mentation over the direct implementation. For most ker-
nels, the speed-up factor of between 2 to 7 is achieved.
With the integer kernels, the performance increase is in-
fluenced by the number of absolutely distinct kernel ele-
ments Nypediaine, While the effect of the number of zero
elements N,.,, is somewhat less. For example, in Table 2,
cubic has four more zero elements and two more abso-
lutely distinct elements than nev_bau_60, and the execu-
tion time of nev_bau_60 is shorter than that of cubic.

TABLE 2
Performance Results with Integer Kernels

Typc Name Nam-disinﬂ N, rcenr airect® (S) ’xdmkb (s} Speed-up"
3 x 3 frei_chen.w5.int (1] S 223 0.31 715
grad_135_degrees 1] 3 2.23 0.42 5.30
sobelx 1 3 2.23 0.56 4.00
hpf_3_int 2 0 2.23 0.79 2.82
§x5 nev_bau_0 i 5 535 112 4.1
nev_bau_60 4 { 5.35 1.71 R
cubic 6 S 5.35 1.81 2.95

¢ toire = @0 eXecution time measured by the direct implementation.
b fam = an execution lime measured by the SDMK implementation.
© Speed-up = fgiece! lutmi-

182
TABLE 3
Performance Results with Floating-Point Kernels
Type Name N dtinet Noera Ttives® (5) fuani” 18} Speed-up*
3Ix3 arg.0.5h 2 3 1.98 0.66 3.00
uasharpdx3 ! 4] 1.98 0.72 278
kirsch.2 3 ¥ t.9% 0.84 236
Ipf_3 3 0 .98 0.89 2.2t
S x5 box.car.S_col 1 s 4.63 1.33 3.47
arg_0.75.h S b 4.63 1.76 2.62
mac_0.6v 6 s 4,63 1.89 2.45
mar_{.6) L] 4.63 2.00 2.31
7x7 bxe_7h 1 7 8.56 2.69 118
arg_ 1.0h 9 7 8.56 3.64 238
dog_1.0v 12 7 8.56 385 2222
mar_0.8 0 ¢ 8.56 4.00 214

@ farea = 20 eXecution time measured by direct implementation.
b e = 4N execution time measured by SDMK implementation.
¢ Spced‘up = Idiwd“\daok'

With floating-point kernels, the performance is less de-
pendent 0n N gisine and the significance of N, i0-
creases. This can be observed in mac_0.6v and mar_0.6
in Table 3. While mac_0.6v has one more absolutely dis-
tinct element than mar_0.6, the execution timec of
mac_0.6v is shorter than that of mar_0.6 because of the
large number of zero clements.

5. CONCLUSION

A new algorithm in efficiently implementing 2-D con-
volution operation is presented. It is based on the com-
mon propettics of the widely used kernels in many image
processing applications. Unlike the specialized optimiza-
tion techniques such as separable kerncls and moving
average method, our algorithm is applicable to a wide
range of kernels. The cfficiency of the algorithm comes
from the intelligent analysis and management of the ker-
nel elements and SDMK approach in computing the con-
volution results. The SDMK convolution algorithm was
implemented on the SUN workstations and its perfor-
mance was compared with that from dircct implementa-

KiM AND KIM

tion. From the test runs, we have achieved a speed-up
factor of twe to seven over the direct implementation.
The extra memory and preprocessing requircments arc
proportional to the kernel size which is usually negligible
compared with the input image size.

REFERENCES

1. 1.S1 Logic Corporation, 164240 Multi-bit filter, in Digital Signal
Processing (DSP) Databook, pp. 99-123, LSI Logic Corporation.
1991,

2. K. Guitag, R. 3. Gove, and J. R. Van Aken, A single-chip multipro-
cessor for multimedia: The MVP. JEEE Comput. Graphics Appl.
12(6), 1992, 53-64.)

3. K. S. Mills, G. K. Wong. and Y. Kim. A high performance floating-
point image computing workstation for medical applications, in
Proceedings, SPIE Medical Imaging 1V: Image Capture and Dis-
plav. Newport Beach, 1990, Vol. 1232, pp. 246-256,

4. K. Konstantinides and V. Bhaskaran, Monolithic architectures for
image processing and compression, IEEE Comput. Graphics Appl.
E2(6), 1992, 75-86.

5. D. K. Yee, D. R. Haynor, H. S. Choi. 8. W. Milton, and Y. Kim,
Development of a prototypical PACS workstation based on the
IBM RS6000 and the X Window system, in Proceedings, SPIE
Medical Imaging Vi: Image Capture, Formatting, and Display.
Newport Beach, 1992, Vol. 1653, pp. 337-348.

6. H.C. Andrews and J. Kane, Kronecker products, computer imple-
mentation and generulized spectra. J. Assoc. Comput. Mach. T2},
1970, 260-268. .

7. M. J. McDonnell, Box-filtering techniques. Comput. Graphics fm-
age Process, 17, 1981, 65-70,

8. B. Jahne, Digital lmage Processing. Concepis, Algorithms, and
Scientific Applications, Springer-Verlag, Berlin/New York, 1991,

9. R. Gonzulez and R. E. Woods, Digital Image Processing, Addi-
son-Wesley. Reading, MA, 1992.

10. R. Haralick and L.. Shapiro. Computer and Robot Vision, Vol. 1,
Addison-Waesley, Reading, MA, 1992,

11. W. Pratt, Digital Image Processing. 20d ed.. Wiley, New York,
1991.

12. 1. Rasure, D. Argiro, . Saver and C. Williams, Visual language
and software development environment for image processing, far.
J. bnaging Systems Technol. 2. 1990, 183-199.

13. SunVision 1.1, Sun Microsystems {nc., 1950,

14. A. Peled and B. Liu, A new hardware realization of digital filters.
JEEE Trans. Acoust. Speech, Signal Process. ASSP-22(6), 1974,
456462,

