
ePRO: A Tool for Energy and Performance Profiler for
Embedded Applications1

Woongki Baek
School of CSE

Seoul National University
Seoul, Korea

wkb@davinci.snu.ac.kr

Young-Jin Kim
School of CSE

Seoul National University
Seoul, Korea

youngjk@davinci.snu.ac.kr

Jihong Kim
School of CSE

Seoul National University
Seoul, Korea

jihong@davinci.snu.ac.kr

1 This work was supported by Electronics and Telecommunications
Research Institute under contract # 1010-2004-0098

Abstract – Energy and performance are two of the most
important parameters in designing embedded systems. In
this paper, we describe the architecture and implementa-
tion of ePRO, a tool for energy and performance profiler
for embedded applications. Energy profiling is mainly
based on the hardware instrumentation which measures
current samples during execution of embedded applica-
tions with the support of a periodic kernel module. Per-
formance profiling is done with little side effect to em-
bedded applications by using a performance monitoring
unit which is provided in the architectural level. Using
ePRO, we could improve the energy consumption and the
performance of a digital signal processing application by
5.4% and 4.4%, respectively.

Keywords: energy profiling, performance optimization,
low-power, embedded software

1 Introduction
For designing efficient embedded applications,

developers should consider two constraints. First, the
performance of an embedded application should be
maximized on a given embedded system. Second, the
energy consumption should be minimized as much as
possible because energy is usually a very critical resource
in embedded systems. These are mainly due to the limited
CPU performance and the limited battery capacity of
embedded systems. The performance and the energy
consumption of embedded applications can not be
considered totally distinct. For example, if a software
implementation of MPEG4 decoder has a very strong
performance but also requires a large amount of energy
consumption, it is not suitable for embedded systems. If
another software implementation of MPEG4 is very
efficient in energy consumption, but has a very poor
performance, it can not be used neither. Therfore,
considering both performance and energy consumption is
very important in designing efficient applications.
 To help developers of embedded applications to design
embedded software with high-performance and low-power
consumption, the demand for a tool which can map the

profiled information of energy consumption and
performance to program structure is increasing. In this
paper, we describe the architecture and implementation of
energy and performance profiler (ePRO).
 ePRO attributes profiles of performance and energy
consumption to program structure. For measuring the
energy consumption of embedded applications, we used
the similar approach proposed by Flinn et al. [1], which
combines hardware instrumentation with kernel software
support. To profile performance information, we assumed
the specific architecture, XScale [2]. By converting the
source code of embedded applications to use a
performance monitoring unit (PMU) in XScale, we can
collect various performance data, such as instruction cache
efficiency, data cache efficiency, instruction fetch latency,
data/bus request bus full, stall/writeback statistics,
instruction TLB efficiency and data TLB efficiency with
little overhead.
 The contribution of this paper is two-fold. First, to the
best of our knowledge, ePRO is the first tool which
profiles both performance and energy consumption data
on a real-world embedded system. Second, we present a
case study on a digital signal processing (DSP) application
as a guideline for using our tool. In the case study, we
obtained 5.4% of reduction in total energy consumption
while improving performance by 4.4% using ePRO.

The rest of this paper is organized as follows. Sections 2
discusses related work. Section 3 describes design
requirements of ePRO. Section 4 presents the architecture
and implementation of ePRO. Section 5 discusses a case
study for a DSP application. Finally, section 6 concludes.

2 Related work
 Existing energy estimation and monitoring techniques
can be divided into two categories: simulation-based or
measurement-based. Energy simulators such as Wattch [3]
and SimplePower [4] estimate the energy consumption in
reasonable time. However, their accuracy is not so high
that energy optimization is difficult by using those
simulators.

 Representative researches in measure-based estimation
techniques are SES [5] and PowerScope [1]. SES is an
energy monitoring tool which collects energy
consumption data in a cycle-by-cycle resolution and maps
the collected energy consumption data to program
structure. SES has a main advantage that the accuracy of
analysis results is very high because profiling is performed
in a cycle-by-cycle resolution. However, SES needs an
extra profile acquisition module which consists of
measurement circuit, profile controller and acquisition
memory. Therefore, the techniques used in SES may not
be applied to ordinary embedded systems which do not
equip with profile acquisition modules.

PowerScope [1] is based on hardware instrumentation
by using a digital multimeter with support of embedded
operating system. Profiled energy costs are mapped to the
procedure level of high-level language. In PowerScope,
Any extra hardware logic is not needed in embedded
systems. Therefore, PowerScope is applicable to ordinary
embedded systems.
 ePRO employs measure-based estimation techniques
used in SES and PowerScope. However, ePRO is distinct
from SES because ePRO does not need any extra
hardware module such as profile acquisition module in
SES. Therefore, ePRO can be used on ordinary embedded
systems. The main advantage of ePRO over PowerScope
lies in performance profiling. ePRO has a performance
profiling module while PowerScope only profiles energy
consumption. By profiling both energy consumption and
performance statistics, we believe ePRO will be more
helpful in developing efficient embedded applications.
Moreover, unlike PowerScope, the daemon of the system-
monitoring module was removed and the function call
path for performance profiling was simplified to reduce
the overhead.

3 Design requirements
 There exist several requirements in designing energy
and performance profiling tool. First, the tool should
profile energy consumption and performance of embedded
applications as accurately as much possible. The tool
should have high resolution in sampling energy and
performance data to map the profiled information to
specific areas in embedded applications. If profiling is
performed in a very low sampling rate, the analysis of
energy consumption and performance of embedded
applications will not be trustable.
 Second, the tool should profile energy consumption and
performance with little overhead. If the overhead incurred
by the tool is too high, profiled energy consumption and
performance data will be less meaningful, because the
behavior of an embedded application is changed so much
by the overhead of the tool.
 Finally, the profiled energy consumption and
performance data should be shown in a user-friendly

format. The tool should help programmers to identify hot-
spots of their embedded applications easily and to
optimize these hot-spots in perspective of energy and
performance.

4 Architecture and implementation
4.1 Overall architecture

 Overall architecture of ePRO is shown in Figure 1.
ePRO consists of three physical modules: target embedded
system, digital multimeter, and host system.
 We use TynuxBox [6] as our target embedded system.
Embedded processor of TynuxBox is PXA255 which is
based on XScale architecture [2]. The benefit of using
XScale-based system is that we can use the performance
monitoring unit (PMU) which is provided in the
architecture level. We can monitor various system
behaviors such as instruction/data cache efficiency,
instruction fetch latency and so on with little overhead
during the execution of embedded applications. Source-
available embedded linux operating system is ported to
TynuxBox. Slight modifications to kernel are needed to
support performance profiling module.
 To perform hardware-instrumentation energy profiling
of embedded applications, we use a digital multimeter.
The multimeter should be able to sample DC current at
high frequency to increase the accracy of the tool. The
multimeter should also be controlled by both embedded
target system and host system to collect energy profiling
via external trigger input and output. Currently, we use a
Agilent 34401A digital multimeter.
 We use a Pentium-4 desktop computer system as a host
system. Linux 2.4.20 is installed on the host system. Host
system and digital multimeter communicate with each
other by using GPIB/Ethernet interface.
 Logically, ePRO also includes three modules: energy
profiler, performance profiler, and user interface. We will
describe three logical modules in the following sections.
4.2 Energy Profiler

Energy profiler consists of system monitor, multimeter,
and energy analyzer. We used the similar approach
propsed by Flinn et al. [1] to design energy profiler.
Energy profiling is performed in two-stages: data
collection and data analysis. During data collection stage,
system monitor periodically triggers a multimemter to
collect DC current samples. Profiled DC current values are
sent to host system via GPIB/Ethernet interface and saved
on the file system of host system. System monitor also
collects system information data such as program counter
(PC) and process identifier (PID) with the same period.
Unlike PowerScope, the daemon of the system-monitoring
module was removed and the function call path for
performance profiling was simplified to reduce the
overhead incurred by energy profiler.

Figure 1. Overall architecture of ePRO

 In data analysis stage, energy analyzer running on a host
system analyzes both profiled DC current samples and
system information data to generate energy profile. Using
the symbol tables of the executables generated by cross-
compiler, energy profiles can be mapped to specific
procedures of embedded applications [1].
4.3 Performance profiler

 Performance profiler consists of a code modifier and a
small set of modifications to embedded Linux kernel. The
overall flow chart of the performance profiler is shown in
Figure 2. Code modifier takes the source code of
embedded applications written in high-level language,
such as C language as an input and produces modified
source code of embedded applications as an output.
Performance analyzing codes (PAC) are inserted into
original source code in procedure level. Therefore,
performance profiling can be performed in procedure level
like profiling of energy consumption.

Figure 2. Overall flow chart of performance profiler

 We also implemented a couple of system calls to
embedded linux kernel. XScale has three performance
monitoring counter registers and one performance
monitoring control register. These registers can be
accessed in privileged mode only, that is kernel-mode in
linux operating systems. Therefore, we implemented
several system calls with which we can access registers
described above.
 Once modified code with PACs is generated, we cross-
compile the modified code and execute the binary
program on the target system. Then, profiled performance
data is saved on the file system of the target system. Using
performance profiler, we can profile seven different kinds
of system activity such as instruction cache efficiency,
data cache efficiency, instruction fetch latency, data/bus
request bus full, stall/writeback statistics, instruction TLB
efficiency, and data TLB efficiency with little overhead.
4.4 User interface

 Profiled energy consumption and performance data are
shown by user interface. We designed user interface to
meet two requirements. First, user interface should present
profiled energy consumption and performance data in a
user-friendly format. User interface shows profiled data in
a graphical way so that programmers can easily identify
the hot spots in the embedded applications. Another
requirement is that user interface should be easily
integrated with conventional embedded application
development tools. We are currently integrating the user
interface of ePRO with Eclipse [6] which is an open
platform for tool integration built by an open community
of tool providers. By integrating the user interface with
conventional embedded application development tools, we
can help embedded application programmers develop the
embedded applications with high performance and low
energy consumption more fast and easily.

5 Case study
 For our case study, we have selected a frequency
modified Fourier transform (FMFT) [7] program. Profiling

results generated by ePRO are shown in Figure 3. It can be
easily seen that we need to optimized the phifun
procedure, which computes phi-function in FMFT
application, since it accounts for more than 70% of energy
consumption of a whole program.

Figure 3. Profiling results for FMFT application

 However, we still do not know why phifun procedure
consumes such a large amount of energy. By profiling the
performance of FMFT application using ePRO, we have
figured out that the execution time of phifun procedure
is more than 80% of the total execution time of FMFT
application. We can infer that phifun procedure
consumes much energy because it is called very frequently
during the execution of FMFT application. This example
clearly shows why performance profiling is important as
much as energy consumption profiling.
 Analyzing the original source code of phifun
procedure of FMFT application, we recognized that it was
implemented inefficiently for two reasons. First, phifun
procedure uses unnecessary malloc and free functions
in C language which are usually executed very costly. We
simply eliminated them by using arrays in C language.
Second, phifun used sin and cos functions which are
implemented in the math library of C language. sin and
cos functions are also very costly functions. We made
lookup tables of sine and cosine functions and refered to
lookup tables to reduce the overhead occured by calling
sin and cos functions.

 Original Optimized Improvement
(%)

Ephifun 24.71J 23.19J 6.0
Cphifun 5033124337 4791157114 4.5
Etotal 34.58J 32.72J 5.4
Ctotal 5667714736 5422150091 4.4

Table 1. Experimental results for FMFT application

Experimental results are shown in Table 1. Ephifun and
Etotal mean the energy consumption in CPU due to
phifun procedure and the entire program, respectively.
Cphifun and Ctotal are CPU cycles taken by phifun
procedure and the entire program, respectively. Before we
optimized FMFT application, phifun procedure
consumed 24.7J and executed in 5,033,124,337 cycles.
After we optimized phifun procedure, it consumed
23.2J and executed in 4,791,157,114 cycles. Our naive

optimization improved energy consumption and
performance of phifun procedure by 6.0% and 4.5%,
respectiviely.

6 Conclusions
 Achieving high-performance and low-energy embedded
applications is one of the most important issues in the
design of embedded applications. To help programmers to
develop efficient embedded applications in terms of
energy and performance more easily, the demand for a
tool which can map the profiled information of energy
consumption and performance to program structure is
increasing. In this paper, we describe the architecture and
implementation of ePRO, a tool for energy and
performance profiler for embedded applications. In our
case study, we could improve energy consumption and
performance of a DSP application by 5.4% and 4.4%,
respectively using ePRO.
 As our future work, we plan to improve ePRO by
increasing the accuracy of the tool while reducing the
overhead incurred by the tool. We also have a great
interest in optimizing more complex and practical
embedded applications such as MPEG4 encoder and
decoder program using ePRO.

References
[1] J. Flinn et al., “PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications”, In Proceedings of
the Second IEEE Workshop on Mobile Computer Systems
and Applications, 1999.

[2] http://www.intel.com/design/intelxscale/

[3] D. Brooks et al., “Wattch: A Framework for Archi-
tectural-Level Power Analysis and Optimizations”, In
Proceedings of International Symposium on Computer
Architecture (ISCA), 2000.

[4] W. Ye et al., “The Design and Use of SimplePower:
A Cycle Accurate Energy Estimation Tool”, In Proceed-
ings of 37th Design Automation Conference (DAC), 2000.

[5] D. Shin et al., “Energy-Monitoring Tool for Low-
Power Embedded Programs”, IEEE Design and Test of
Computers, 19(4), 2002.

[6] http://www.eclipse.org/

[7] http://www.boulder.swri.edu/~davidn/fmft/fmft.html

