Optimal Software Pipelining of Loops with Control Flows

Han-Saem Yun
School of Computer Science
and Engineering
Seoul National University

hsyun@davinci.snu.ac.kr

Seoul National

ABSTRACT

Software pipelining is widely used as a compiler optimization tech-
nigue to achieve high performance in machines that exploit instruc-
tion-level parallelism. However, surprisingly, there have been few
theoretical or empirical results on optimal software pipelining of

loops with control flows. In this paper, we present three new con-
tributions for this under-investigated problem. First, we propose a
necessary and sufficient condition for a loop with control flows to

have an optimally software-pipelined program. We also present a
decision procedure to compute the condition. Second, we present

two software pipelining algorithms. The first algorithm computes
an optimal solution for every loop satisfying the condition, but may
run in exponential time. The second algorithm computes optimal
solutions efficiently for most (but not all) loops satisfying the con-

dition. Third, we present experimental results which strongly in-
dicate that achieving the optimality in the software-pipelined pro-
grams is a viable goal in practice with realistic hardware support.

Categories and Subject Descriptors

D.3.4 [Programming Language§: Processors-eompilers
General Terms

Algorithms, Languages

Keywords

Software pipelining, instruction-level parallelism, VLIW

1. INTRODUCTION

Software pipelining refers to a class of fine-grain loop paral-
lelization algorithms which impose no scheduling barrier such as
basic block or loop iteration boundaries, thus achieving the effect of
fine-grain parallelization with full loop unrolling. Software pipelin-

ing computes a static parallel schedule for machines that exploit

instruction-level parallelism (ILP) such as superscalar or VLIW
processors.

While software pipelining has been used as a major compiler op-
timization technique to achieve high performance for ILP proces-

sors, surprisingly, there have been few theoretical results, let alone

practical ones, known on the optimality issue of software pipelined

*This work was supported by grant No.R01-2001-00360 from the Korea Science &
Engineering Foundation.

Permission to make digital or hard copies of all or part of this work for

Jihong Kim
School of Computer Science
and Engineering

jihong@davinci.snu.ac.kr

*

Soo0-Mook Moon
School of Electrical
Engineering
Seoul National University

smoon@altair.snu.ac.kr

University

programs. One of the best known open problems is the time opti-
mal software pipelining problem, which can be stated as follows:
given a loop (with or without control flows), 1) decide if the loop
has its equivalent time optimal program or not and 2) find a time
optimal parallel program if the loop has one, assuming that suffi-
cient resources are availablé parallel program is said to be time
optimal if every execution patp of the program runs in its mini-
mum execution time determined by the length of the longest data
dependence chain ip[19].

For straight-line loops (without control flows), the time optimal
software pipelining problem is well understood and a time opti-
mal program can be computed in polynomial time [1]. This is be-
cause the process of software pipelining can be easily formalized
thanks to the strong periodicity of such loops (e.g., a periodic exe-
cution model and dependence patterns). For example, the problem
of software pipelining of such loops can be modeled by a simple
linear formulation [8] and several software pipelining algorithms
have been developed using this model.

On the other hand, for loops with control flows, software pipelin-
ing algorithms cannot exploit the loop periodicity because execu-
tion paths of these loops cannot be modeled by periodic constraints.
This irregularity results in numerous complications and makes the
formalization very difficult. As a consequence, time optimal soft-
ware pipelining of such loops has been under-investigated, leaving
most of theoretical questions unanswered. In this paper, we focus
on loops with control flows.

1.1 Previous Work

Until recently, only two results for loops with control flows were
published [19, 20]. The work by Uht [20] proved that the resource
requirement necessary for the time optimal execution may increase
exponentially for some loops with control flows. The work by
Schwiegelshohret al. [19], which is the best known and most
significant result on time optimal programs, simply illustrated that
certain loops with control flows do not have their equivalent time
optimal programs. Since the work by Schwiegelshehml. was
published, no further research results on the problem have been re-
ported for about a decade, possibly having been discouraged by the
pessimistic result.

Instead, most researchers focused on develdpétigrsoftware
pipelining algorithms. To overcome the difficulty of handling con-
trol flows, many developed algorithms imposed unnecessarily strict
constraints on possible transformations of software pipelining. For

personal or classroom use is granted without fee provided that copies areexample, several software pipelining algorithms first apply trans-

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’02,June 22-26, 2002, New York, New York, USA.

Copyright 2002 ACM 1-58113-483-5/02/000655.00.

formations that effectively remove control flows before scheduling
[4, 12], and recover control flows after scheduling [21]. Although
practical, these extra transformations prohibit considerable amount
of code motions, limiting the scheduling space exploration signifi-
cantly.

Loopsidentified from
Schwiegelshohnet al.’swork

Loopsidentified from
our previous work

Loops that have time

¥ oopsthat do nat Fave
i optimal solutions

thne optimal solutions

S

Contribution 1: Time
Optimality Condition

Contribution 2: Time
Optimal Software
Pipelining Algorithm

Figure 1: Loop classification based on time optimality

Recently, we have proposed a novel formalization of software
pipelining of loops with control flows and, based on the formaliza-
tion, suggested a necessary condition for loops with control flows
to have equivalent time optimal programs [22]. Our previous work
can be considered as a generalization of Schwiegelséicdirs re-
sult, significantly expanding a set of loops that cannot have equiv-
alent time optimal programs.

1.2 Contributions

In this paper, we are to identify exactly what can and cannot be
achieved by software pipelining and to empirically evaluate how
often software pipelining can generate optimal solutions in real ap-
plications. Our contributions can be divided into two parts, theo-
retical ones and practical ones.

For the theoretical contributions, we further extend our previous
results and give answers to the following two fundamental open
problems on time optimal software pipelining:

Question 1 Is there a decision procedure that determines if a
loop has its equivalent time optimal program or not?

Question 2 For the loops that have the equivalent time optimal
programs, is there an algorithm that computes time optimal pro-
grams for such loops?

For loops with control flows, these two questions have not been

L3:

if ccO

ro:=r I

cc0 := (r1==0)
store(r2,r1)
LO L1

Figure 2: A tree VLIW instruction

if ccl

store(r2,r0) L2

is of little practical importance; it suffers from excessive overhead
in computation time and code expansion. In the worst case, the
overhead is inherently unavoidable [20]. As a practical alternative,
we present a more realistic optimal software pipelining algorithm
which runs faster with less code expansion and less hardware re-
quirement. Unlike the former optimal algorithm, this algorithm
guarantees optimal solutions when loops satisfy a stronger version
of the Time Optimality Condition. According to our experimental
observations, however, most loops satisfying the Time Optimality
Condition satisfy the stronger version as well, which strongly in-
dicates the practical significance of the proposed realistic software
pipelining algorithm. (Note that this paper focuses on the theoreti-
cal results and that the experimental results are provided to empha-
size the importance of the theoretical results in practice.)

The rest of the paper is organized as follows. We explain the ma-
chine model assumptions, program representation and dependence
representation in Section 2. In Section 3, we present the Time Opti-
mality Condition and describe how to compute it. In Sections 4 and
5, we present two optimal software pipelining algorithms, respec-
tively. Experimental results are given in Section 6 and we conclude
with a summary and directions for future work in Section 7.

2. PRELIMINARIES

2.1 Architectural Requirements

In order that the time optimality is well defined for loops with
control flows, some architectural assumptions are necessary. In this
paper, we assume the following architectural features for the target
machine model: First, the machine can execute multiple branch op-
erations (i.e.multiway branchind14]) as well as data operations

adequately formulated, let alone being solved, until we proposed concurrently. Second, it has an execution mechanism to commit

a new formalization of software pipelining in [22]. In this paper,
we call the necessary and sufficient condition for a loop to have its
equivalent time optimal program as thiene Optimality Condition

As an answer to the first question, we present the Time Optimal-

ity Condition and describe how to compute the Time Optimality

Condition. For the second question, we present a software pipelin-

ing algorithm that computes time optimal programs for every loop
satisfying the Time Optimality Condition.

Figure 1 summarizes our theoretical contributions graphically.
The enclosing ellipse represents the dedf all the reducible in-

operations depending on the outcome of branchingdaeditional
executior]6]). The former assumption is needed because if multi-
ple branch operations have to be executed sequentially, time opti-
mal execution cannot be defined. The latter one is also indispens-
able for time optimal execution, since it enables to avoid output
dependence of store operations which belong to different execution
paths of a parallel instruction as pointed out by Aileral. [3].

As a specific example architecture, we use the tree VLIW archi-
tecture model [15], which satisfies the architectural requirements
described above. In this architecture, a parallel VLIW instruction,

nermost loops and the bold curve represents the boundary betweergalled a tree instruction, is represented by a binary decision tree as
two sets of loops, one set whose loops have equivalent time optimalshown in Figure 2. A tree instruction can execute simultaneously
programs (i.e., the right region) and the other set whose loops doALU and memory operations as well as branch operations. The
not have time optimal programs (i.e., the left region). The small branch unit of the tree VLIW architecture can decide the branch
circle represents the set of loops shown to have no time optimal target in a single cycle [14]. An operation is committed only if it
solutions by Schwiegelsholet al. [19] while the region closed by lies in the execution path determined by the branch unit [6].
the dashed curve represents the set of loops shown to have no time2 .
optimal solutions by our previous work [22]. The work described in 2 Program Representatlon
this paper classifies all the loopslihinto one of two sets, proves We represent a sequential progrénby a control flow graph
that the classification is decidable (i.e., each set is recursive) and(CFG) whose nodes are primitive machine operations. If the se-
shows that there exists an algorithm for computing time optimal quential progranPs is parallelized by a compiler, parallel tree
solutions for eligible loops. VLIW programPyee is generated. Whil@&ee is the final output
The optimal software pipelining algorithm, which is given to an- from the parallelizing compiler for our target architecture, we rep-
swer Question 2 above, enables us to complete the theoretical treatresent the parallel program in tlextended sequential representa-
ment on time optimal software pipelining. However, the algorithm tion for the description purpose.

Lo:
<I» 10:=10ad(r0)
L1

lei
L2
L2
r0:=r if oc0
€c0 = (11==0)
r1:= load(r1) L
(b)

such thag(i] = p[i+ j] forall 1 <i <|g|. For a pathpandi, j (1<

i <j<|p]. pli, j] represents the subpath induced by the sequence
of nodes frompli] up to p[j]. Given pathsp; = (n1,ny,---,Nk)
andpz = (Mg, Ni-1,-+ M), PLo P2 = (N1, N, -+, Nk, Nk 1, ,1Ny)
denotes the concatenated path betwgeandp,. A pathp forms a
cycle if p[1] = p[|p|] and|p| > 1. For a given cycle, ¢ denotes the
path constructed by concatenatiwgith itselfk times. A path from

the start node to one of exit nodes is calledestrcution patfand
distinguished by the superscript ‘e’ (e.@f). An execution path

of parallel program is further distinguished by the extra superscript

Under the extended sequential representation, both sequentiatsp’ (e.g., p®SP).

programs and parallel programs are described using the same nota- It may incur some confusion to define execution paths for a par-
tions and definitions used for the sequential programs. Comparedallel program because the execution of the parallel program con-
to sequential programs, parallel programs include the additional sists of transitions among parallel instructions each of which con-
information on operation grouping. Figure 3. (a) shows an input sists of several nodes. With the conditional execution mechanism
sequential progran®s and Figure 3. (b) shows its corresponding described in Section 2.1, however, we can focus on the unique com-

10 := load(r0)

000 = (0==0)

c0:= (r0==0) r1:=10ad(r0)

if ccO

L2

@ (o

Figure 3: (a) A sequential program, (b) a parallel tree VLIW
program, and (c) a parallel program in the extended sequential
representation

parallel tree VLIW progranPyee. Using the extended sequential
representationPyee is represented by Figure 3.(c). The parallel

mitted path of each parallel instruction while pruning uncommitted
paths. Then, like a sequential program, the execution of a parallel

program shown in Figure 3. (c) is based on a sequential representaprogram flows along a single thread of control and corresponds to

tion except that it has the operation grouping information indicated
by shaded regions. A group of operations in the shaded area indi-
cates independently executable operations and is calpedadlel
group. A parallel group corresponds to a tree VLIW instruction and
can be easily converted into the tree VLIW instruction with some
local transformation on copy operations, and vice versa [15].

2.3 Basic Terminology

A progrant is represented as a trip{& = (N,E), 0, 8). (This
representation is due to Aikeat al. [3].) The body of the program
is a CFGG which consists of a set of noddkand a set of directed
edgesE. Nodes inN are categorized intassignmentodes that
read and write registers or global memdryanchnodes that affect
the flow of control, and special nodestart and exit nodes. The

a path rather than a tree.

Some attributes such as redundancy and dependence should be
defined in a flow-sensitive manner because they are affected by
control flows. Flow-sensitive information can be represented by as-
sociating the past and the future control flow with each node. Given
a noden and paths; andpy, the triple(n, p1, p2) is called anode
instancef n= py[|p1|]] = p2[1]. Thatis, a node instance, p1, p2)
defines the execution context in whintappears imp; o p2. In or-
der to distinguish the node instance from the node itself, we use
a boldface symbol liken for the former. The node component of
a node instance is addressed bpodgn). A trace of a pathp,
writtent(p), is a sequencéy,ny, - -- ,n|p‘> of node instances such
thatn; = (p[i], p[1,i], pli,|p|]) for all 1 <i < |p|. Thei-th compo-
nent oft(p) is addressed b p)[i] and the index of a node instance

execution begins at the start node and the execution ends at the exif, in the traca(p) is represented bpoin) For a node instance

nodes. E represents the possible transitions between the nodes.

n = (n, p1, p2) in an execution patfp® in a sequential program, an

Except for branch nodes and exit nodes, all the nodes have a singleattributeit (n) is defined as the number of iterations whizhspans
outgoing edge. Each branch node has two outgoing edges whilegyer.

exit nodes have no outgoing edge.

O is a set of operations that are associated with nodsk ifihe
operation associated withe N is denoted byop(n). More pre-
cisely, op(n) represents opcode and constant fields only; register
fields are not included ip(n).2 Without loss of generality, ev-
ery operation is assumed to write to a single register. We denote
by regw (n) the register to whicl writes and byregs(n) a set of
registers from whickn reads .

A configuration is a pain,s) wheren is a node inN ands is

From the formalization of software pipelining in [22], for an ex-
ecution pathp®SPin a parallel program, there is a unique execution
patha(p®sP) in the sequential loop that correspondfsP. Fur-
thermore, for a node instaneein p®SP, there is a unique node
instanceB(n) in a(p®sP) that corresponds to.

Some of node instances in parallel programs are actually used to
affect the control flow or the final store while the others are not. The
former ones are said to leffectiveand the latter onesedundant
A node is said to b@on-speculativéf all of its node instances are

a store (i.e., a snapshot of the contents of registers and memoryeffective. Otherwise it is said to mpeculative22].

locations). The transition functiod, which maps configurations
into configurations, determines the complete flow of control start-
ing from the initial store. Letg be the start node arsd an initial
store. Then, the sequence of configurations during an execution
is <<n07&)>7 T <ni73>7 Tty <nt7st>> Where<ni+173+1> = 6(<n|73>)
for0<i<t.

A path p of G is a sequencény,---,ng) of nodes inN such
that(ni,niy1) € E for all 1 <i < k. For a given patlp, the length
of p is the number of nodes ip and denoted byp|. Thei-th
(1 <i < |p|) node ofp is addressed bp[i]. A pathqis said to be
a subpathof p, written g C p, if there existsj (0< j < |p|—q|)

1Since a parallel program is represented by the extended sequential representation, thgd

notations and definitions explained in Section 2.3 and 2.4 apply to parallel programs
as well as sequential programs.

For two programs to be equivalent, only the dependence patterns of these are needed

to be identical but not register allocation patterns. For this reason, register fields are
not included inop(n).

2.4 Dependence Model

With the sound assumption of regular memory dependences, true
dependence information can be easily represented for straight line
loops thanks to the periodicity of dependence patterns. For loops
with control flows, however, this is not the case and the dependence
relationship between two nodes relies on the control flow between
them. In order to model this type of dependence, we associate path
information with the dependence relation. The dependences carried
by registers are defined as follows.

DEFINITION 1. For nodesn; and n, and a pathp such that
[1] = ng, p[|p|] = n2, N2 is said to be dependent on along p,
written ny <p Ny, if
regw(ny) € regk(nz) and
regw(p€li])) # regw(m) forall1<i<|p|.

Furthermore, we can extend the dependence relation on node in-
stances as follows:

DEFINITION 2. Givenapathpandi,j (1<i<j<|p|), t(p®)[j]
is said to be dependent or{p®)[i], writtent(p®)[i] < t(p®)[j] . if
Pli] <pjij) Pl

The dependence relation between two node instances with mem-
ory operations may be irregular even for straight line loops. Exist-
ing software pipelining techniques rely on conservative dependence
analysis techniques, in which the dependence relationship between
two node instances is determined by considering the iteration dif-
ference only and is usually representeddaya dependence graphs
[11] or its extensions [7, 18]. In our work, we assume a similar

memory dependence relation, in which the dependence relation be

tween two node; andny alongp (p[1] = ny, p[|p|] = n2) rely only
on the number of iterations thatspans.

Assuming regular memory dependences, straight-line loops can
be transformed so that every memory dependence does not span

more than an iteration by unrolling sufficient times. For loops with

control flows, we assumed that they are unrolled sufficiently so that

Condition | (Time Optimality Condition).
(a) There exists a constalgf > 0 such that for any patp
in L,
[P[L][l + [l pli+1,[plll < [pll+By
forall 1<i<|p| and

(b) there exist constaniy, Bz > 0 such that for any path

pinZ, |p| < By ||p||+Bs.

Informally, the Time Optimality Condition requires that every
operation be moved withinlBounded rangéo yield the time opti-
mal execution for every execution path. Condition I.(a) states that

for any pathp in £, if the pathp is splitted into two subpaths, the

sum of the lengths of the longest dependence chains in each sub-
path can exceed the length of the longest dependence chpiatin
most byB;.

Condition 1.(b) is rather trivial. It states that for any pattin

L, |p| is bounded by a linear function ¢f||. In other words, ifL

has an equivalent time optimal program, there exists a fairly long

memory dependences do not span more than an iteration to Simp"fydependence chain for every paifin L.

notations and the algorithm. This seems to be too conservative but

we believe that the claims in this paper can be shown to be still valid
in other memory dependence models with slight modifications to
the proofs.

Now we are to define dependence chaiior sequential and the
parallel programs.

DEFINITION 3. Given a pathp, a dependence chaid in p
is a sequence of node instandgg, ny,--- ,Nk) in t(p) such that
n; < njy1 forall 1 <i < k. A dependence chain is said to be criti-
cal if it is the longest one ip. Thei-th component of a dependence
chaind is addressed by|i] and the number of componentsdris
denoted byd|.

3. TIME OPTIMALITY CONDITION

In this section, we present the Time Optimality Condition and
describe how to compute it. Before presenting the Time Optimality
Condition, we first formally definéme optimality

3.1 Time Optimality

For each execution patp®SP in a software pipelined program
LSP, the execution time of each node instamcia t(p®SP) can be
counted from the corresponding parallel control flow graph and is
denoted byr(n). Time optimality of the parallel programiSP is
defined as follows [19, 3, 22]:

DEFINITION 4. £SPis time optimal if, for every execution path
pSSPin £SP, 1(t(p®SP)[|p®SP|]) is the length of the longest depen-
dence chain in the execution pgph.

The definition is equivalent to saying that every execution path
in £5P runs in the shortest possible time subject to the true de-
pendences. Note that the longest dependence chaifiimused
instead of that inp®SP because the latter may contain speculative
nodes which should not be considered for the definition of time op-
timality. Throughout the remainder of the paper, the length of the
longest dependence chain in a patis denoted by p||.

3.2 Time Optimality Condition

In Sections 3.3 and 4, we show that a laofhas an equivalent
time optimal program if and only if the following condition is sat-
isfied:

THEOREM 5. Condition | is a necessary and sufficient condi-
tion for £ to have an equivalent time optimal program.

Section 3.3 gives a proof on the necessary part of Theorem 5.
We have already proved a condition, which is slightly weaker than
Condition I.(a), is a necessary condition in our previous work [22].
In Section 3.3, we prove that the previously proved condition im-
plies Condition I.(a). We prove the sufficient part of Theorem 5
by construction, i.e., the proof for the sufficient part follows from
the optimal software pipelining algorithm presented in Section 4.
Condition | is intuitive and useful in deriving the theorems, but it
is not obvious how to determine if a loop satisfies Condition | or
not. If Condition | is to be directly computed from the expressions,
every execution path should be enumerated, which is impossible.
So we present another condition in Section 3.4 which is equivalent
to Condition | and can be computed more easily.

3.3 Necessary Part of Theorem 5

If a loop £ has an equivalent time optimal prograf®” but it
does not satisfy Condition 1£SP must exhibit some anomaly. If
Condition 1.(a) is not satisfied, an operationin £5P should be
executed infinitely earlier tham that precedes; in £. In case that
Condition I.(b) is not satisfied, infinitely many operations should be
executed at the same time slot. We show thatloesed-formpar-
allel program satisfies this anomalous requirement. In our previous
work [22], we have proved the following condition is a necessary
condition, which is slightly weaker than Condition I.(a):

Necessary Condition .
There exists a constaBt> 0 such that for any execution path
psin L,
L0+ 1e°0L [N < [1P°) +B
forall 1<i<j<|pf.

THEOREM 6. Condition | is a necessary condition fof to
have an equivalent time optimal program.

Proof. To prove the above condition implies Condition 1.(a), we
first substitutd + 1 for j in the above condition. Then it remains
to show that the inequality also holds for every path, not only for
every execution path. For a pgthlet p; be a simple path from the

Z=7+W

g y=x+1

96 W=X/2 d;=<6.9,7.6>

4

Figure 4: Dependence cycles

DC(c) = {d,d3}

DC(c) ={dj}
DC(cy ={dj}
DC(c) = {dg}

loop header tq[1] and letp, be a simple path fronp[|p|] to an
exit of L. Thenp’ = pyo po py is an execution path of, and the
above inequality holds fop'. Therefore, we have

([P, il +[[pli+ 1, I

< IP'[Li+ [pa| = [+ Pl + [pal, [T

< [Ip'l+B < [Ipll+ [l pal| + | p2l| + B

<|pll+B+2-L
whereL is the length of the longest simple pathn

SupposeL has an equivalent time optimal progran®F. Let

B, be the maximum height among tree parallel instructions 9t
and letBs be2-L-B,. For a pathp, we definep’ to be the same
path used for the proof of Condition I.(a). From the fact thaF is
time optimal and the definition dy, |p'| is bounded byB; - || p'|].
Therefore, we have

[l < [P'| < Bz [lp'll < Bz-(||pll+2-L) =B2-|[p]+Bs. O

3.4 Computing Time Optimality Condition

In this section, we explain how to compute the Time Optimal-
ity Condition. Directly computing the Time Optimality Condition

requires that the infinitely many execution paths be enumerated
which is not possible. So, we derive another equivalent condition

that can be checked in a finite number of steps.

Before presenting the new condition, we define a new term, a

dependence cycleFor straight-line loops the concept of the de-
pendence cycle is well known, but for loops with control flows,

the dependence cycle has not been defined formally. We define the>

dependence cycle for each cyclic path/iras follows.

DEFINITION 7. Given a cyclec (may not be simple) irC, d
is a dependence cycle with respectctaf there existl > 1 and
1<ip<ig <+ <ijg <1 (|c[—1) such that

i1<[c[-=1 A ig=i1+(-1)-(lc[-1) and
d[j] =c'[ij] for 1<j<|d| and
d[” <C|[ij.,ij_1] d[j +l] for 1<j< ‘d‘ .

There are a finite number of simple dependence cyclBE(c)
as well as inDC(c) and these dependence cycles can be enumer-
ated using Johnson’s algorithm [9]. It is also useful to define de-
pendence relation on dependence cycles. Informadlys said to
be dependent od; if there is a dependence chain from a node in
di to one ind,.

DEFINITION 9. Giventwo cycles; andc; in £ such that[iq]
= ¢piz], dp is said to be dependent ahy (d; € DC(cy), dp €
DC(cp)), writtend; <C dp, if

Jj1 < j2, dq[j1] <p do[j2] forsomep s.t.

pC cipar{dl)ﬂ oc1[1,i1] o Cofin, [Cal] o char(dZ)“)

If di[ki] = da[ko] for somek; andk, di andd, are said to be
joined, writtendy X dy.3

LetC = {c1,Cp,--- } represent the set of all the simple cycles in
L starting from the loop header node and@t(1 < k < |C|) and
C* be defined as follows:

CK={ci,0C,0---0C, | Vj#Lij#i| A Vj>1i1<ij}
cr =y ck.

Then, the following condition is equivalent to Condition I.

Condition 1.
(a) For any cycle in C*, DC(c) is not empty and

(b) For each cycle; (1 <i < |C*|) in C*, there
exists a dependence cyctk € DC¢(ci) such that
dj <Cdgforall1<j<k<|C¥

It is possible to check if a loop satisfies the Condition Il in a finite
number of steps because only finite number of cycles need to be
enumerated.

Let us consider the example loop shown in Figure 4. There are

"two simple cycles; = (1,2,3,4,5,6,10,1) andc, = (1,7,8,9,10,1)

in the loop. SoC = {c1,¢c} andC* = C*UC? = {c1, 0, }U{c10
c2(=c3)} = {c1,c2,c3}. We can easily verify that Condition 11.(a)
is satisfied but Condition II.(b) is not satisfied}; = (3,5,4,3) and
d3 = (7,7) are the unique elements DC¢(cz) andDCe(c3), re-
pectively, butl, is not dependent ods.

LeEmmA 10. If a given loopL satisfies Condition I, it also sat-
isfies Condition I1.

Proof. (a) is obviously satisfied. Suppose (b) is not satisfied

for somec; andc;,. For d; € DC(c1), selectd; € DCer(c2) and

d3z € DC(cy) such thatds <Cdy andslopdds) is maximum. Note

that everyd, € DC¢(c2) may not be dependent on any dependence

cycles inDC(c1) and therds is set to be an imaginary null cycle.
Letp(i) =ci'o cgb' o ps whereps denotes any simple path from

the unique loop header node to one exit and are defined as

Figure 4 shows an example of dependence cycles. We associatgg|ows.
several attributes with the dependence cycle, which are defined be-

low.

DEFINITION 8. For a dependence cyctk the sum of latencies
of d[1],d[2],--- ,d[|d| — 1] is denoted by(d). spar(d) denoted
in Definition 7 andslopdd) is defined to b&(d)/spar(d). Fur-

ther, DC(c) represents the set of dependence cycles associated with

¢ and DC¢(c) represents the subset BIC(c) that consists of all
the dependence cycles with the maximum slof¥d(t). A depen-
dence cycle ibC¢((c) is called a critical dependence cycle and its
slope value is denoted bgaxslop€c).

a:{ LCM(spar(d1),spar(dy))
LCM(spar(ds),spar(dz),spards))

b= [slopgds)/(slopgdz) —r)]
wherer denotes the second largest slop®iB(c,).

It is evident that one of the longest dependence chaptiincan
be represented as

if dzis null ,
otherwise .

D

dgai/spar(dll)j—l o p? Odéabi/spar(ds)Jfl o pb

3Note that thex relation is symmetric.

for some ds € DC(c), ds € DC(cy), and dependence chaip§
and pg. Therefore, we have

Pl < 8(da)- (ai/spar(da)) + 5(ds) - (abi/spar(ds)) + o
= slopgd,)-ai+slopdds) -abi+a

for some constard.
Case 1 ds ¢ DC¢(Cp).
slopgds) <r and||p(i)|| < slopgd;)-ai+r -abi+as. From

slopgds)-a+r-ab—slopdds) -a—slopedy) -ab<
a- (slope(dy) +b- (r — slopedy))) <
a- (slope(dy) — slope(dy)) =0

we have
[p(i)|| < slopeds) - ai+slopgd;) - abi+a .

Case 2 ds € DCq(C2).
From the definition ofiz, slopgds) < slop&ds). So we have

[pS(i)|| < slop€ds) - ai+ slopedy) - abi+a .

From the assumptiomlg ¢ DC¢(c1) andslop€ds) < slop€ds).
But we have

| p1(i)|| > slopgdy) - ai
|p2(i)|| > slopgdy) - abi .

wherepy (i) = p(i)[1, (Jc| —1)-ai] and pa(i) = p(i)[(jc| 1) -ai+
L [[p(Il)- So,

P ()] + IP2(D)[| = [[p()[| < (slopedy) —slopgds)) -i —ar .

Therefore, Condition | is not satisfied, a contradiction.

g Camua>
CO B>
2 c=<2,1,2>
O wIL
¢, =<3,3>

G =<1,2,2,3,3,2,1>
@ (b)

Figure 5: A new representation for a cycle: (a) A graph with

cycles and (b) a tree representation ofs

For each cyclec=¢j, ocj,0---0¢j, € C* ,
k-1

z Pj(1h-1 mod g+1 > J(2+h-1 mod K+1: = +J(Cl+h—1 mod K+1
h=0

= maxslop€c) .

By using a simple argument based on linear algebraic theorems,
we can easily show that the linear system has a solution such that
every pi, i, - i IS positive. (Actually, the solution is not unique
and we select any one of them.) Givpn,,. ... i, we can char-
acterize the lengths of critical dependence chains.Mgtlenote
the length of the longest dependence chain in cyglesci, o--- o
Cig—1(1<isip, -+ ,ic) < [C]) and letM; denote the length of the
longest dependence chain in simple pathsin

LEMMA 12. Given a pathp = psoCj, oG, 0---0Cj, o pf in L
wherek > |C|, G, € IC| forall 1< j<k and bothpsandps are
simple paths, leis be

k=Icf o :
h=0 p|1+h7|2+h7'"~,|\c\+h :

Then, M3 < ||p|| <M1+2-M2+Ms.

Before showing that the inverse proposition also holds, we intro-
duce a new representation for cycles. As will be shown in Lemma Proof. Let ¢ = Gjg oCjg 10+ 0Cj,. Thenmaxslop€c’) is
11, itis useful to represent a cycle by a composition of given subcy- equal toMz by Lemma 11. Therefore, we have
cles. For example, consider a cycleshown in Figure 5.(a), given ol <
the subcycles;, ¢y, c3 andcy.The cyclecs can be represented by a -
tree shown in Figure 5.(b).

Given a cyclec, the tree representation of written byCT(c), <
can be found by the algorithm in [23]. Each nodeCi(c) repre- .
sents a cycle iC*. Conversely, the sequence of a cycle represented Similarly,
by a tree can be found by the algorithm in [23]. For the sake of con-
venience, we use the following notation for cycles. Given a cgcle
c(j) represents the same cycleasut the sequence is shifted such
thatc(j)[i] = c[(i+ j —1modic|) +1] for 1 <i < |c|.

lIpsll +lciy 0 Gip 0+ 0 Ciyg -l
+ llCig 0 Cig 10 oyl + I prl
Mz +M1+Mz+Mz = My +2-Mz+Mg .

HpH 2 HCi‘C‘OCi‘C‘+1O'~~OCikH:M3 |
From Lemma 12, we can compute the constants.

LEmMA 13. If By is selected a&- M +4- My, Condition 1.(a)

] is satisfied.
LEmMMA 11. For any cyclecin £ such thatt ¢ C*,

Proof. For a pathp = pso¢j, oCj,0--- oG, o p; in L we splitp
into two subpath; andp,. Thanp; andp, can be written as

maxslopégc) = ZC‘ECT@max.slope{ci) .
PL=Ps oCjo---0C op;, and
P2 = Ps, 0GCj, 0 -0CyoPr, -
By Lemma 12 we have
[Pl + [P2l = l[pIl <
I-[C|
Mi+2-Mz+ tho Pizin,izih, = ijcpsh T
k—[C|
Mi+2-Mz+ Zh:Hl Pirin ,izen, igen —

k=[C] . .
h=0 Pirin,izen, -, licl+h

< 2-M1+4-M . O

Proof. For a critical dependence cyaikin ¢, we decomposd
into critical dependence cycles @il (c). From Condition 1l.(b)d
can be written aslj o dy, (dj € DCcr(cj)) wherec;j is a leaf node
inCT(c). Then itis obvious thahaxslopgc) = maxslopgc;) +
maxslopegc’) wherec(l) = cjoc/(I’) for somel andi’. By apply-
ing the same argument td recursively, we havenaxslopec) =
YcecT(c)maxslopdc) . O

For [C|/®l unknownspiy i, ¢, (1 < i,iz, - ,ijc) < [C|), we

solve the following linear system d€*| equations in theC|/Cl
unknowns.

LEMMA 14. If B, and B3 are selected as

< —
Bzzmax{% | Cj€|C‘71§|17|27"'7|\C\§‘C|}
11,12, 11

B3=2-L¢

whereLc is the length of the longest simple cyclesn Condition
I.(b) is satisfied.

Proof. For a pathp= psoGj, oGj,o---0Cj opsin L,
k
pl< Ypalle-1+2-Le
k=[C| (S | o .
< h=0)) . . 'p|1+h7|2+ha“‘a|\c\+h)+B3_k
p|1+h s124h, 5 licj+h
k=C| .
< B Zh:O Pitin,izen, =, ijcitn +B3
< By-|pll+Bs - (By Lemma12) O

Note that all the constan®;, B, andBs can be computed in finite
time.

LEmMMA 15. If a given loopL satisfies Condition I, it also sat-
isfies Condition I.

Proof. Directly from Lemmas 13 and 141

THEOREM 16. Condition | is decidable.

Proof. ~ From Lemmas 10 and 15, Condition | is equivalent to
Condition II, whose decision procedure is obvious from the given
expression

4. TIME OPTIMAL SOFTWARE PIPELIN-
ING ALGORITHM

In this section, we present a software pipelining algorithm that
computes a time optimal parallel program for every loops satisfy-
ing Condition |. (The result in this section also serves as the proof
for the sufficient part of Theorem 5.) The time-optimal software
pipelining algorithm is mostly based on the algorithm by Ailen
al. [3], the latest version dPerfect Pipelining2].

We first present the software pipelining algorithm by explaining
our modifications to the Aiken’s algorithm. Then, we prove that
the output of the algorithm is a time optimal parallel program if the
input loop satisfies Condition I.

4.1 The Algorithm

In this section, without loss of generality, we assume that every
operation take4 cycle to execute. An operation that takesycles
can be transformed into a chaining lofunit-time delay pseudo
operations, which can be safely eliminated after scheduling. We
assume that an arbitrary but fixed logypsatisfies Condition .

Before scheduling, a sequential loop is unrolled infinite times to
form an infinite (but recursive) CFG and then the infinite CFG is

y=.x1+1 y1='x1+1
J — J y=x2+1 —p J y2=x2+1
\ x3=0(x1,x2) \éq)(xl,xz) \ x3=0(x1,x2)
y=i+l y=0(yL.y2)

Figure 6: Scheduling above ap-function at the join point

assignment (SSA) form [5], the SSA form is software pipelined into
a finite parallel graph, and then the finite parallel graph is translated
back out of the SSA form.

By translating into the SSA form, the false dependences are com-
pletely eliminated because every variables are defined by exactly
one operation. Moreover, extgafunctions do not incur additional
true dependences because the operations that use the target regis-
ters of thep-functions can always be combined with txunctions
and be moved above thgfunctions. For example, in Figure 6,
y=x3+1 is to be scheduled abou=@(x1,x2). The operation
y=x3+1 is combined withk3=¢(x1,x2) and split intoy=x1+1 and
y=x2+1. Furthermore, to maintain the SSA form even after code
motion above the join point, a negrfunction is introduced at the
join point. In Figure 6, tway definitions are replaced by tiyet and
y2 definitions and a new-function,y=@(y1,y2), is added.

If an operation is not true-dependent on any operations (except
@-functions) in a path, it can always be moved along the path even
if it is not free from the false dependences in the original pro-
gram. When translating a software pipelined program out of the
SSA form, some copies may remain, but all the unremovable copy
operations can be executed concurrently with any operations that
are dependent on the copy operation.

Before describing the algorithm, we define some additional no-
tations. Let£™ represent the infinite recursive graph obtained by
unrolling £ infinite times. For a noda in £, letn' denote the cor-
responding node in thieth unrolled copy ofZ in £L*. For a seX
of nodes inL®, X! is defined to be the s¢n'*J|n' € X}. Two sets
of nodes inL®, X1 andXp, are said to bequivalentf X; = Xg for
somek.

The proposed time-optimal software pipelining algorithm begins
with £, an acyclic infinite CFG, and successively transfora?s
into £SP which consists of parallel groups. Figure 7 describes the
overall processing steps of the software pipelining algorithm. The
procedureéSOFTWARE_PIPELINE calls theSCHEDULE_PARALLEL _
GRoup procedure [23] to build a parallel group, and then to build
parallel groups for all the branches of that group, and so on. If at
any point the algorithm encounters the equivalent set of available
operation nodes in the second time, it uses the previously scheduled
parallel group.

Before building a parallel group, th€OMPUTE AVAILABLE _
OPERATIONS procedure [23] is invoked to compute the set of all

incrementally compacted by semantic-preserving transformations gyijable operation nodes that can move into the parallel group

of Percolation Scheduling [16]. During scheduling, the algorithm
finds equivalent nodesandn’ in the infinite CFG, deletes the infi-

without violating the true dependencesin our algorithm, every
operation node that is not blocked by the true dependences is al-

nite subgraph below’, and adds backedges from the predecessors ways available for scheduling. As in [3], we impose additional

of n’ to n. In this way, the infinite CFG eventually becomes a finite
parallel graph.

constraint on available operations: operations are available at most
k iterations. The predetermined consténs called asliding win-

The Aiken’s original algorithm does not handle false dependencesgoyy [3] and it guarantees the termination of twaile loop in the

appropriately [3]. An operation node which is blocked by the false

SOFTWARE_PIPELINING procedure.

dependences but not by true dependences may not be available for opce the available operation nodes are computedSthep-
scheduling. To compute a time optimal solution, the false depen- | £_paraLLEL _GROUP procedure repeatedly moves the opera-

dences should be overcome so that the parallel schedule is con-
_Stramed by the true depen_de_nc_:es only. _We m9d|fy the A'k_enls_ ong- 4rhs procedure is functionally equivalent to the same procedure in the Moon’s algo-
inal algorithm so that the infinite CFG is put into the static single rithm [15].

procedure SOFTWARE_PIPELINE (£, windowsize)
L= r"
translate L' into the SSA form
frontiers := {(Nstart, Nroot) }
scheduledbefore:= { }
backedges= {}
while (3 (np,ns) € frontiers)
frontiers := frontiers— {(np,ns) }
A := COMPUTE.AVAILABLE _OPERATIONY £/, ns, windowsize
if (3A" € scheduledbefore s.t. A" andA are equivalent)
n' := parallel_group.root[A']
replace(np, ns) by (np,n’) and
delete unreachable nodes frath
backedges.= backedgesU {(np,n')}
else
SCHEDULE_PARALLEL _GROUR(L', ns, A, frontiers)
scheduledbe fore:= scheduledbe foreu {A}
end if
end while
foreach ((np,ns) € backedges
INSERT_.CONSISTENCY.COPIES L', np, Nns)
end foreach
translate £’ back out of the SSA form
remove dead operation nodes
return L'
end function

Figure 7: The time-optimal software pipelining algorithm.

tion nodes to a group boundary [15]When a branch operation
node is moved, the group boundary is split into multiple bound-
aries. When moving up an operation nogidunctions may be en-

countered. In this case, the scheduled operation node is combined

with the@-functions as described in t&®OMBINE_SOURCE. REG-
ISTERSprocedure [23]. The correctness of the algorithm is proved
in [23].

From the greediness of the algorithm, along with our modifica-
tions in the renaming framework (which has the effect of removing
the false dependences), the algorithm exhibits the following prop-
erty.

LEMMA 17. Let £SP be the result of the software pipelining
algorithm with the sliding window df iterations. Then for an ef-
fective node instanae in an execution patip®sPin £5P such that
1(n) > 1, there must exist an effective node instande p®sP such
that

(")

Proof. Suppose that such’ does not exist and consider the
execution snapshot of tHeOFTWARE_PIPELINE procedure when

() =1 A (B(n') < B(n) v it(B(n)) —it(B(n')) > k).

Before presenting the time optimality proof, we prove some mis-
cellaneous properties stated below in Lemmas 18 and 19. (Recall
that we have assumed thatsatisfies Condition | and that every
operation take4 cycle to execute.)

LEMMA 18. Forapathpin Landl=ii <ix<---<ij <|p|,

S lplipipall < oI+ (-2 (Brt+1).

Proof.
[Pl = [pfiz, 2]l + [Ipliz + 1,i1]|| — B
> |Iplizi2][| + [pfiz,it]| - 1— By
> |[pliv,i2] [l + (llpliz,is]l| + [[pliz,ii][| = 1—By) —1—By
> 2 Sl —(1-2)-(Br+1) . O

LEMMA 19. For node instances; andn; in a pathpin £ such
thatit(nz) —it(ng) >k,

Ipiposiny). postng)]| > == 2By

whereL is the length of the shortest cycle in
Proof. Sincen; andn; are separated by more thhiiterations,

the number of node instances between them is at [¢astl) - k.
From Condition I.(b) we can write

[p[pogny), pogny)]|| > (pos(nz)—pclgsinl)Jrl_Bﬁ
R e .
B2

We are now ready to prove the time optimality of the software
pipelining algorithm. TheSOFTWARE_PIPELINING procedure re-
quires the size of sliding window as an input parameter. To achieve
the time optimality, we select the sliding window size as

2-By-(B1+1)+Bg3
ws- (2B Bt DBy @

wherelL is the length of the shortest cycle in

LEMMA 20. Let £5P be the result of the software pipelining
algorithm with the sliding window di Siterations. ThensSP is
time optimal.

Proof.
€,

It suffices to show that for an arbitrary but fixed execution

the set of available operations for the predecessor parallel grouppa“;g SPin L9P, 1(t(p®P)[|p®SP[]) = ||a(p®*P)||. Let p denote
Q of B(n) is computed. For some path from the group boundary @(P**) andGp(Np,Ep) be a directed graph such thidp is the

of Q to B(n), there cannot exist any node on whigm) is true-
dependent. Otherwise, some node on wifiigh) is true-dependent
should be scheduled inf@ so thatB(n) can be scheduled into the
successor parallel group &, which contradicts the assumption.

Furthermorejt (B(n)) can exceednin{it(n”)|n” € Q} at most
by k. Therefore, when the parallel grodp is built, the Com-
PUTE_AVAILABLE _OPERATIONSprocedure computdXn) as avail-
able and3(n) must be scheduled in@, a contradictiond

4.2 Time Optimality of the Algorithm

The software pipelining algorithm described in Figure 7 always
generates time optimal parallel programs for loops that satisfy Con-
dition I. The proof is based on the greediness of the algorithm.

5Since the transformations in tf&HEDULE_PARALLEL -GROUP procedure can be
implemented using transformations described in the Moon'’s algorithm whose correct-
ness has been already proved [15], they preserve program semantics.

set of node instances ip) and Ep = E[UE{ where

Ep={(n1,n2)| n1<nz}
Ep = { (n1,n) | it(n2) —it(n1) >W§.

We first show that the length of the longest pattGp is equal
to the length of the longest path & (Np,E[), the subgraph of
Gp induced byE],. Suppose that there exists a path=ni —
n, — ---,— Ny in Gp whose length is larger than the length of the
longest path irGp, (which is equal td|p||). Then, there must exist
s (> 1) edges(ni;,Ni; 1), -, (Nig, Nigr1) (i1 <iz2 < -+ <lg) in
pp that come fronEf. So, we have

. —1 . . .
Ipll < Ipol =i+ 3 j(ij+1—ij)+h—is

< [Ip[L. postny,)] | + 3 Sl plpos(m, 1), posini)|

+ lIplposnigra), [[pIlTII - @)

From Lemma 18, we can write
—1
[Pl = [Ip[L, pos(niy)][| + Z?le\p[pOS(niiH), pos(n;; ;]I +
Iplposnig+1). [IPI]II+ 35—y llpPos(i,), postni)]

~2s-(By1+1) . 3)
From (2) and (3), we have
S j-1llplposni,), posnisa)]| < 2s-(Bi+1) . (4)

Since (nj;+1,Ni;) € Ep, it(nj;11) —it(ni;) >WS
Therefore, by Lemma 19, we have for alKi <s

((L-1)-WSt1-Bg

B2
2-B1+2,

>

[[p[pos(ni;), pos(ni; 1)]]|]

>
which contradicts (4). So the assumption is false and the length of

the longest path iGp is equal to the length of the longest path in
Gp, which is equal td|p||.

Let o(n) denote the length of the longest pati3p that reaches
n. Forl <i <||p®P|, we are to show that
T(t(p*P)[i]) < o(B(t(p**P)[i]))

whent(p®SP)[i] is an effective node instance. The proof is by in-
duction oni. Letmbe the largest integer such thiét(p®sP)[i]) = 1.
Then, the proposition holds trivially for all <i < m. For the in-
duction step, assume that the proposition holds fat gllj < i. By
Lemma 17, there must exigt< i such that

t(p®P)[i'] is an effective node instance and

T(t(p*P)[i") = t(t(p*P)fi]) -1 and

(BE(p*P)[i']) < B(E(p®P)[i]) Vv

it (B(E(p**P)[i])) — it (B(t(p®P)[i"])) >WS)

In any cases, B(t(p=sP)[i']) , B(t(p*P)[i])) € Ef. Therefore, by
the definition ofo, we have

a(B(t(p*N)[i])) = o@E(P*N) + 1.

From (5), (6) and the induction hypothesis, we have

T(P*D)]) = (PP +1
< o(BE(p*P)[i")) +1 < a(BE(p*P)i])) -

®)

(6)

Therefore, we have

T(t(p*P)K)) < o(B(t(p**)[K]) = [Pl

wherek is the largest integer such thgp®SP)[K] is an effective
node instance.

To finish the proof, we need to show that redundant node in-
stances do not affect the length of the schedule. Effective node

, ify==0

N\,
a=g1(x)'\ / a=g2x)
I x=1(a)

y=h(x) al =gl(x)
V a2=g2(x)

K!v y==0

x:m<

@

$ity=0] _ify==0

" \’a’:‘gl(x) a=g2W8,
Wx=i@ |

¥ y=h(x)

Moo

y=ho ¥

® =g1(x2)

“\z"az =g2(x2)

a=gl(x) a=g2(x)

(d)

y =h(x) y=h(x)

x=1(@) x=f(@)

if y==0

if y==0

©
Figure 8: (a) A CFG before scheduling, (b) its corresponding
NCFG, (c) the software-pipelined NCFG, and (d) the (time-
optimally) software-pipelined CFG. (Solid lines and dashed
lines represent control flows and dependences, respectively.
Each shaded region represents a parallel group.)

be computed in a finite number of steps. The size of sliding win-
dow can be directly computed from Equation (1). So, we have the
following theorem.

THEOREM 22. There exists a software pipelining algorithm that
computes time optimal programs for loops that satisfy Condition I.

5. APRACTICAL SOFTWARE PIPELINING
ALGORITHM

In this section, we present a more practical software pipelining
algorithm. The software pipelining algorithm uses an intermediate
program representation called nondeterministic control flow graph
(NCFGY proposed by Milicev [13]. As shown in Figure 8, the
original control flow graph (CFG) of a loop (Figure 8.(a)) is trans-
formed into an NCFG (Figure 8.(b)) and the software pipelining
algorithm is applied to the NCFG. Then, the software pipelined
NCFG (Figure 8.(c)) is transformed back into an equivalent CFG
(Figure 8.(d)). In Section 5.2, we present a software pipelining
algorithm that computes a time optimal NCFG for every loop sat-
isfying a new condition, which is a stronger version of the Time
Optimality Condition. Before describing the software pipelining
algorithm, we first explain the NCFG.

5.1 Nondeterministic Control Flow Graph

instances are not dependent on redundant node instances. Further- The NCEG can be understood as a nondeterministic version of

more, there cannot exist a redundant node instance following the the standard control flow graph (CFGYhere is a one-to-one cor-
last effective node instance. This is because every node inStanCQ’espondence between NCFGs and CFGS, as is the case with nonde-

following the last effective branch node is guaranteed to be effec-
tive by the dead code elimination after the scheduling.

From Lemma 20, we can state the following theorem.

THEOREM 21. Condition | is a sufficient condition foL to
have an equivalent time optimal program.

From Lemma 20, the algorithm in Figure 7 is a time-optimal
software pipelining algorithm, provided that the size of sliding win-
dow is computable. From Lemmas 13 and B4,B, andB3 can

terministic finite automata (NFA) and deterministic finite automata
(DFA). Given a CFGG of a loop (before software pipelining), let
PS={p3,p5,--- } represent the set of all the acyclic paths starting
from the loop header to a predecessor of the loop header or a loop
exit. Then the corresponding NCFGVCFC is simply defined as

BMilicev used the term ‘predicate matrix’. For the rest of the paper, we use ‘NCFG’
instead of ‘predicate matrix’, since the former is much more intuitive.

Twe apply the notations and definitions explained in Sections 2.3, 2.4 and 3.4 to the
NCFG as well.

set of the latencies and the time offsets, the execution tinmgkbf
is given by

wwpK) = 3PP o)) + o(pk) (7)

wherebp(p) denotes a path in the NBB-graph which corresponds

to pin the NCFG graph. Thus, by determining the latencies and the

time offsets, we essentially build a software-pipelined schedule.
The latencies of NBBs are determined such that, for any simple

cycle c in the NBB-graph, the sum of the latencies of NBBscin

is equal to the slope of the critical dependence cycle in the corre-

sponding cyclein the NCFG, i.e[i‘illp(c[i}) = maxslopgc).

We call such a tuple of latencies asight tuple. However, a tight

@ (b)
Figure 9: An example of split transformation

follows: tuple does not always exist because the number of equations may be
NNCFG _ {nij|1<i<|PS,1<j<I} larger than the number of variables (the unknown latencies). This
NCEG ') i can be resolved by the split transformation, which increases the
E ={(Mjmjs1) [1<T<PY 1< j<li} U number of NBBs (equivalently, the variables).
{(niy,nia) [1<, i < P9}, The split transformation also increases the number of simple cy-
R ' ') . cles in the NBB-graph incurring additional equations. But, some of
wherel; = [pf| andn; j has the same attributes p¥j] (e.g.,op, the newly introduced equations may be linearly dependent on other

regw andregs). The path(n; 1,ni 2, ,nwi‘) forms anondeter-
ministic basic block (NBB)which is denoted by;. Each node
n € NNCFG pelongs to exactly one NBB and the NBB is addressed
by b(n). An NCFG can be abstracted into &BB-graphGNEB
whose nodes are the NBBs of the NCFG. Initia)NEB is a com-
plete graph. p(b1) =3, p(b2) =2, p(b1) +p(b2) =4 .
The CFG in Figure 8.(a) has two acyclic paths from the loop
header to its predecessor and they correspond to two NBBs of the
NCFG in Figure 8.(b). Informally, if a node is contained in more
than one path of the CFG, it is copied into the corresponding NBBs
of the NCFG.

equations and, consequently, the number of variables may exceed
the number of equations. In Figure 9.(a), there are three simple
cycles in the NCFG but only two nodes in NCFG. Therefore, no
solution exists for the linear equations

After splitting withk = 1, the number of variables increases to four
but all the newly introduced linear equations are linearly dependent
on the original equations. The new linear equations are

p(bi) =3, p(b3) =2, p(b7)+p(b3) =4,

The original NCFG is expanded by tlsplit transformation. the bi b2 2 bl ! b2 2 b2 bl
original NCFG GNCFC s transformed into &-level splitNCFG p(b1) +p(b1) +p(bz) =7, p(bz) +p(b1) +p(bz) =7,
GEChFG by spflittin’g\jlggch NBB OG:CFG into \NNBB_|" copies(.]I Sinc_t;) p(b}) +p(b?) +p(b3) + p(b3) =9
each copy of an contains the same operations, we describe the _)
NBB-graphGNBB of GNCFGC tg define the split transformation: and (p(b1),p(b3),p(b7),p(b3)) = (3,2,2,2) is a solution. Note

K K that the linear dependence comes from the strong dependence re-
NNEBB — {b™ | 1<i < |NNBB| 1< m< [NNBBJK) lation M between dependence cycles. If the following condition is
\eh n: N \BB k_l N m—1 satisfied, we can always compute a tight tuple:
ENBB — (b bll) | mf = [NNEB[K- '“*”WWF” -
Condition IlI.

Figu_resgf\l(g):gnd 9.(b) show an NCREYCFC and its 1-level split (a) For any simple cycle in GNCFS, DC(c) is not empty and
version,GY¢FC. _) _

A software-pipelined NCFG is transformed back into an exe- (b) For each simple cyclg in GNCFE, there exists a depef-
cutable CFG [13], which is similar to the NFA-to-DFA transfor- dence cycled; € DCer(c;) such that
mation. A nice property of an NCFG is that the execution time of dj X dy for every pair of simple cycles; andcy.
any path in the NCFG is equal to that in the corresponding CFG.
Theref it suffi t ild a time-optimall ftw. ipeli
NCeFrgore, it suffices to build a time-optimally software pipelined LEMMA 23. If GNCFCsatisfies Condition Il1, there is a positive

' integerk such that there exists a tight tuple of latencies of NBBs of

5.2 The Software Pipelining Algorithm GRe.

As with several software pipelining algorithms based on mod-
ulo scheduling, our software pipelining algorithm decouples the
computation of a schedule and code motions. After computing a Given an NCFG that satisfies Condition Il, the optimal software-
schedule, the code motions that are implicit in the schedule are as-pipelined schedule can be computed by the algorithm in Figure 10.
certained subsequently.

The scheduling algorithm first determines tlagency of each
NBB of the NCFG based on integer linear programming and then LEMMA 24. The schedule computed BYpMPUTE_SCHEDULE
computes each operationtBne offsetfrom the beginning of its meets dependence constraints.

NBB. Informally, the latency of an NBB can be understood as the

initiation interval (I). For example, the latency of the left NBB of Proof. We would like to show that

the NCFG in Figure 8.(b) is the Il of the left path of the CFG in

Figure 8.(a). We denote the latency of an NBBy p(b) and the ¥p vk K’ (k < K') such thap[K] <pycky PIK]

time offset ofn € NNCFC by g(n). Given an execution paghand a T(t(p)[K]) +8(pK)) < T(t(p)[K]) - (8)

Proof. The proof can be found in [23]2

procedure COMPUTE_.SCHEDULE
1: if (Condition Il is not satisfied)
2: return SCHEDULENOT_.FOUND

3: else

4: compute a tight tuplép(b1),p(b2),...)

1: NPG := NNSFG (" {npummy }

2: EPG = { (myj, nvyr) | mj <p Ny wherepis the shortest path from; tony;, }

3: EPC := Epg U ({npummy } x (NDG {noummy }))

4: foreach(e = (nj , nyy) € EP Gy

5: r(e) := &(mj)—d(e)-p(b)whereé(nii) is the latency of the operation
of mjj andd(e) =0 if i = i’, 1 otherwise

6: end foreach

7: foreach(e = (Npummy , nij) € EPC)

8: r(e):=0

9: end foreach

10: foreach (n; € NPC — fnpummy })

11: a(nij) := the length of the longest path 8P¢ = (NP¢, EP®)

where the length of a pathis the sum of weight(e) of edges inp
end procedure

Figure 10: The algorithm to compute a software-pipelined
schedule.

procedure MOVE_CODE
1: foreach(b;)

2: b; _<>
3: foreach(nj)
4: MoVE-OR(nij, by, o (nij))

end procedure
procedure MOVE_OR(n, b, 0)

1: if (0 < 0 < p(b))
placesn on the time-slot of b
elseif(c < 0) /* move upward */
foreach ((b’, b) € ENEB)
Move.orP(n, b',o+p(b’))
else /* move downward */
foreach ((b, b') € ENBB)
Move-orP(n, b, a—p(b’))
nd procedure

POONQIRAW

Figure 11: The algorithm to move operations in NCFG.

By virtue of the longest path inequalities, we have
o(p[K) +r((p[kl, pK])) <
o(p[K]) +8(p[k]) — d((pK|,

Therefore, we have

t(t(p)[K) + 3(plk]) — t(t(P)K])

PP o bp(p) 1)) + o(pIK) + 3(p[K]) —

A p(bp(p)[1])) —a(pK))
z!b”lbpl“fk‘ e(bp(p)11)) + o(plK) — o(pK]) + 3(p[K)
=3 e e bp(P)I]) + d((pIK, PIK])) - p(b(PIK)(10)

If b(plk]) = b(p[K]), we have

t(t(p)[K) + 3(pK) — T(t(p)[K])
< d((pK], p[k)) - p(b(p[k)))
Otherwise, we have

T(t(p)[K) + 3(plK]) — T(t(p)[K])
—p(b(p[K])) +d((p[K], pK]))-
—p(b(p[K)) +1-p(b(pk))) =

So, the schedule meets dependence constraints.

o(p[k]) , which implies
pk1)) - p(b(plk))) < o(p[K]) . (9)

PILKDI-1

=0-p(b(plK)) =

IN

p(b(p[K))

Figure 11. The procedufd ove_cODEfirst initializes each NBBs
and invokes thtMovE_opprocedure for each operation nodes. The
procedureM ovE_OP places each operation node such that the exe-
cution time of each operation instance becomes Eq. (7). From the
definition of the tight tuple of latencies of NBBs, it can be easily
seen that the software-pipelined NCFG is time-optimal.

6. EXPERIMENTAL RESULTS

In order to evaluate how practical the proposed software pipelin-
ing algorithms are, we have performed several experiments using a
SPARC-based VLIW testbed [17]. We used 1317 innermost loops
(with control flows) extracted from SPEC95 integer benchmark
programs. We considered loops with up to 64 operations. We as-
sumed that load operations take three cycles while all the other op-
erations take one cycle.

Figure 12.(a) explains an overview of experimental scenarioes.
In the first experiment (i.e., E1 in Figure 12.(a)), we measured how
many loops satisfy Condition Il (i.e., the Time Optimality Condi-
tion). Because the computation of Condition 1l may require exces-
sive timé&, we set the upper bour}, on computing Condition II.

If the computation takes longer thdp,, the computation gives up,
assuming that a loop does not satisfy Condition Il. Whgnwas

set to be 30 seconds, we could not determine Condition Il within
the threshold time for about 34 of 1317 loops tested. In Figure
12.(a), the set of such loops is denoted by L1. Among the loops
for which Condition Il can be checked withify,, 92.5% satisfied
Condition II. (That is, 89.% of the loops tested satisfied Condition
II.)

Next, we turned our attention on the practicality of the realistic
software pipelining algorithm presented in Section 5. In the sec-
ond experiment (i.e., E2 in Figure 12.(a)), we measured how many
loops satisfy Condition Il (i.e., the stronger version of the Time
Optimality Condition presented in Section 5). Unlike the first ex-
periment (i.e., E1), we could determine Condition Il within the
threshold time for all the loops (except those in L1 and L2) since
Condition Il can be more efficiently evaluated. In the experiment,
79.2% of total loops satisfy Condition I, which indicates that Con-
dition Il does not impose a much practical constraint on Condition
1. In Figure 12.(a), L3 represents the set of loops that failed Con-
dition IIl.

In the third experiment (i.e., E3 in Figure 12.(a)), we applied the
proposed realistic software pipelining algorithm to the loops satis-
fying Condition Il and measured the running time of the algorithm.
In rare cases, the algorithm did not run within the threshold time
Tih. In Figure 12.(a), the set of such loops is denoted by L4 and
the set of loops for which optimally software pipelined loops are
computed withinTy, is denoted by L5, respectively. The portion of
loops belonging to L4 and L5 are 2&and 76.86 (of total loops),
respectively. Figure 12.(b) summarizes graphically the results of
three experiments, E1, E2 and E3.

In the final experiment (i.e., E4 in Figure 12.(a)), we were con-
cerned with the resource requirement of optimally software pipelined
loops (in L5). We measured the number of functional units and the
number of registers in the optimally software-pipelined programs
and the results are summarized in Tab® (We assumed homo-
geneous FUs.) Among the loops in L5, 4% 6f the loops require

8The problem of determining if Condition Il, i.e., the Time Optimality Condition, is
satisfied or not can be easily proved to be NP-hard by reducing from the 3-satisfiability
problem. We omit the proof due to the page limit.

9In counting the number of FUs, we omitted copy operations used for renaming. Most
of the renaming copy operations can be eliminated by post-pass optimizations such as
copy propagation or register coalescing after unrolling [10], which is applicable even

Given a schedule, operation nodes are moved by the algorithm in to unreducible loops.

E3: Apply
optimal SP
algorithm

E1: Compute |

E2: Compute |
Condition I

Condition 111

E4: Measure
resource
reguirement

[LL37% L272% L399%
®)

Figure 12: (a) Experiment scenario and (b) loop classification

L4:24% L5:768% |

based on the experimental results. (The area of each region
roughly represents the relative size of the corresponding set of

loops whenTy, = 30 seconds.)

[% of Loops |
[#ofFUs[] <819-12] 13-16] > 16 [Total |
<32 395] 8.2 80] 13.2] 689
of 33-64 3.2 31 531 151 26.7
Regs. || > 64 0 0 0.3 4.1 44
Total 4271 11.3 136 324 100

Table 1: Resource requirement for optimally software-

pipelined programs.

at most 8 FUs while only 32% of the loops require more than 16

i

(2]
(3]

(4]

5

(6]

(7]

(8]

(9]
[10]

[11]

[12]

FUs. We believe that the resource requirement can be further re-

duced if the proposed software pipelining algorithm is augmented
by post-pass local code motions (e.g., moving operations in non-

A&Eggrﬁg.w\lgo%§ Optimal Loop Parallelization. Rroc. of

the ACM SIGPLAN '88 Conference on Programming Language
Design and Implementatippages 308—-317, 1988.

A. Aiken and A. Nicolau. Perfect Pipelining. Proc. of the Second
European Symposium on Programmihgcture Notes in Computer
Sciencevol. 300, pages 221-235. Springer-Verlag, 1988.

A. Aiken, A. Nicolau, and S. Novack. Resource-Constrained
Software PipelininglEEE Transactions on Parallel and Distributed
Systems6(12):1248-1270, 1995.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of
Control Dependence to Data DependenceRroc. of the 10th ACM
Symposium on Principles of Programming Languagesies

177-189, 1983.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck.
Efficiently Computing Static Single Assignment Form and the
Control Dependence GrapACM Transactions on Programming
Languages and Systenis(4):451-490, 1991.

K. Ebciajlu. Some Design Ideas for a VLIW Architecture for
Sequential Natured Software. Rroc. of IFIP WG 10.3 Working
Conference on Parallel Processingages 3-21, 1988.

J. Farrante, K. Ottenstein, and J. Warren. The Program Dependence
Graph and Its Use in OptimizatioACM Transactions on
Programming Languages and Syste®(8):319-349, 1987.

F. Gasperoni and U. Schwiegelshohn. Generating Close to Optimum
Loop Schedules on Parallel Process&arallel Processing Letters
4(4):391-403, 1994.

D. Johnson. Finding all the Elementary Circuits of a Directed Graph.
SIAM Journal on Computingl(1):77-84, 1975.

S. Kim, S.-M. Moon, J. Park, and K. Ebghu. Unroll-Based

Register Coalescing. IAroc. of the 14th International Conference

on Supercomputingages 296-305, 2000.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence
Graphs and Compiler Optimizations. Rmoc. of the 8th ACM
Symposium on Principles of Programming Languagesies

207-218, 1981.

M. Lam. Software Pipelining: An Effective Scheduling Technique
for VLIW Machines. InProc. of the ACM SIGPLAN 88 Conference
on Programming Language Design and Implementatiages
318-328, 1988.

3] D. Milicev and Z. Jovanovic. Control Flow Regeneration for

critical dependence chains). For the register requirement, we ob-[14]

tained more positive results; 9840of the loops require at most 64
registers. Furthermore, for 684of the loops, 32 registers were

sufficient without causing any spill.

Our experimental results show that a significant portion of real

[15]

loops have their time-optimal software-pipelined programs. Fur- [16]

thermore, the time-optimal programs can be computed with realis-

tic levels of hardware support within a reasonable time limit.

7. CONCLUSION AND FUTURE WORK

In this paper, we presented a necessary and sufficient condition
for loops with control flows to have their equivalent time optimal
programs and described how to compute the condition. We also
presented a software pipelining algorithm that computes a time op-
timal solution for every eligible loop satisfying the condition. The
results solve two fundamental open problems on time optimal soft-

ware pipelining of loops with control flows.

As a practical alternative, we presented a more realistic optimal
software pipelining algorithm which covers most eligible loops and
runs faster with less code expansion and less resource requiremen
Our experimental results strongly indicates achieving the optimal-
ity in the software-pipelined programs is a viable goal in practice
with realistic hardware support. As a future work, we are inter-

[17]
(18]

[29]
[20]

f21)

ested in developing a resource-constrained near-optimal software

pipelining algorithm guided by the results shown in this paper.

8. ACKNOWLEDGEMENT

We would like to thank Prof. Uwe Schwiegelshohn (our shep-
herd), Dr. Kemal Ebciglu and anonymous referees for their help-

ful comments and suggestions.

[23]

Software Pipelined Loops with Conditions. To appear in
International Journal of Parallel Programming

S.-M. Moon and S. Carson. Generalized Multi-way Branch Unit for
VLIW MicroprocessorslEEE Transactions on Parallel and
Distributed System$(8):850-862, 1995.

S.-M. Moon and K. Ebciglu. Parallelizing Non-numerical Code with
Selective Scheduling and Software PipeliniAG:M Transactions on
Programming Languages and Systefi6):853-898, 1997.

A. Nicolau. Uniform Parallelism Exploitation in Ordinary Programs.
In Proc. of the International Conference on Parallel Processing
pages 614-618, 1985.

S. Park, S. Shim, and S.-M. Moon. Evaluation of Scheduling
Techniques on a SPARC-Based VLIW TestbedPtac. of the 30th
Annual International Symposium on Microarchitectysages
104-113, 1997.

K. Pingali, M. Beck, R. Johnson, M. Moudagill, and P. Stodghill.
Dependence Flow Graphs: An Algebraic Approach to Program
Dependences. IRroc. of the 18th ACM Symposium on Principles of
Programming Languagepages 67-78, 1991.

U. Schwiegelshohn, F. Gasperoni, and K. Ef&iio On Optimal
Parallelization of Arbitrary Loopslournal of Parallel and

Distributed Computing11(2):130-134, 1991.

A. Uht. Requirements for Optimal Execution of Loops with Tests.
IEEE Transactions on Parallel and Distributed Systems
3(5):573-581, 1992.

N. Warter, S. Mahlke, W-M. Hwu, and B. Rau. Reverse
If-Conversion. InProc. of the ACM SIGPLAN '93 Conference on
Programming Language Design and Implementatjgages

290-299, 1993.

H.-S. Yun, J. Kim, and S.-M. Moon. A First Step Towards Time
Optimal Software Pipelining of Loops with Control Flows.Pnoc.

of the 10th Conference on Compiler Constructipages 182—-199,
2001.

H.-S. Yun, J. Kim, and S.-M. Moon. On Time Optimal Software
Pipelining of Loops with Control Flows. Technical report, School of
CSE, Seoul National Univ., 2001. Available from
http://davinci.snu.ac.kr/Download/app.techrep.pdf.

