
Reducing Solid-State Drive Read Latency
by Optimizing Read-Retry

Jisung Park1 Myungsuk Kim2,3 Myoungjun Chun2 Lois Orosa1 Jihong Kim2 Onur Mutlu1

1ETH Zürich 2Seoul National University 3Kyungpook National University
Switzerland Republic of Korea Republic of Korea

ABSTRACT
3D NAND flash memory with advanced multi-level cell techniques
provides high storage density, but suffers from significant perfor-
mance degradation due to a large number of read-retry operations.
Although the read-retry mechanism is essential to ensuring the
reliability of modern NAND flash memory, it can significantly in-
crease the read latency of an SSD by introducing multiple retry
steps that read the target page again with adjusted read-reference
voltage values. Through a detailed analysis of the read mechanism
and rigorous characterization of 160 real 3D NAND flash memory
chips, we find new opportunities to reduce the read-retry latency by
exploiting two advanced features widely adopted in modern NAND
flash-based SSDs: 1) the CACHE READ command and 2) strong ECC
engine. First, we can reduce the read-retry latency using the ad-
vanced CACHE READ command that allows a NAND flash chip to
perform consecutive reads in a pipelined manner. Second, there
exists a large ECC-capability margin in the final retry step that can
be used for reducing the chip-level read latency. Based on our new
findings, we develop two new techniques that effectively reduce the
read-retry latency: 1) Pipelined Read-Retry (PR2) and 2) Adaptive
Read-Retry (AR2). PR2 reduces the latency of a read-retry operation
by pipelining consecutive retry steps using the CACHE READ com-
mand. AR2 shortens the latency of each retry step by dynamically
reducing the chip-level read latency depending on the current op-
erating conditions that determine the ECC-capability margin. Our
evaluation using twelve real-world workloads shows that our pro-
posal improves SSD response time by up to 31.5% (17% on average)
over a state-of-the-art baseline with only small changes to the SSD
controller.

CCS CONCEPTS
• Hardware→ External storage.

KEYWORDS
solid state drives (SSDs), NAND flash memory, latency, read-retry

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446719

ACM Reference Format:
Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim,
and Onur Mutlu. Reducing Solid-State Drive Read Latency by Optimizing
Read-Retry. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3445814.3446719

1 INTRODUCTION
NAND flash memory is the prevalent technology for architecting
storage devices in modern computing systems to meet high storage-
capacity and I/O-performance requirements. 3D NAND technology
and advanced multi-level cell (MLC) techniques enable continuous
increase of storage density, but they negatively affect the reliability
of modern NAND flash chips. NAND flash memory stores data as
the threshold voltage (VTH) level of each flash cell, which depends on
the amount of charge in the cell. New cell designs and organizations
in 3D NAND flash memory cause a flash cell to leak its charge more
easily [7, 65, 66]. In addition, MLC technology significantly reduces
the margin between different VTH levels used to store multiple
bits in a single flash cell. Consequently, the VTH level of a 3D
NAND flash cell with advanced MLC techniques (e.g., triple-level
cell (TLC) [6, 37] or quad-level cell (QLC) [32, 44]) can quickly shift
beyond the read-reference voltage VREF (i.e., the voltage used to
distinguish between cell VTH levels) after programming, which
results in an error when reading the cell.

To guarantee the reliability of stored data, a modern SSD com-
monly adopts two main approaches. First, a modern SSD employs
strong error-correcting codes (ECC) that can detect and correct sev-
eral tens of raw bit errors (e.g., 72 bits per 1-KiB codeword [73]).
Second, when ECC fails to correct all bit errors, the SSD controller
performs a read-retry operation that reads the erroneous page1 again
with slightly-adjusted VREF values. Since bit errors occur when the
VTH levels of flash cells shift beyond the VREF values, sensing the
cells with appropriately-shifted VREF values can greatly reduce the
number of raw bit errors [6–8, 10–14, 16, 64–66, 84].

Although read-retry is essential to ensuring the reliability of
modern NAND flash memory, it comes at the cost of significant
performance degradation. A read-retry operation repeats a retry
step until it finds VREF values that allow the page’s raw bit-error
rate (RBER) to be lower than the ECC correction capability (i.e., the
number of errors correctable) or finds for sure that the page cannot
be read without errors. Recent work [84] shows that a modern SSD
with long retention age values (i.e., how long data is stored after
it is programmed) and high program/erase (P/E) cycles (i.e., how

1A NAND flash memory concurrently reads and writes multiple cells at a page
(e.g., 16 KiB) granularity (see Section 2.2).

https://doi.org/10.1145/3445814.3446719
https://doi.org/10.1145/3445814.3446719

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

many writes/erases are performed) suffers from a large number of
read-retry operations that increase the read latency linearly with
the number of retry steps. Our experimental characterization using
160 real 3D TLC NAND flash chips, in this work, shows that a read
frequently incurs multiple retry steps even under modest operating
conditions. For example, under a 3-month data retention age at zero
P/E cycles (i.e., at the beginning of SSD lifetime), we observe that
every read requires more than three retry steps.

Prior works [12, 13, 64–66, 77, 84] attempt to reduce the number
of retry steps by quickly identifying near-optimal VREF values, but
read-retry is a fundamental problem that is difficult to completely
eliminate in modern SSDs. For example, an existing technique [84]
reads a page using VREF values that have been recently used for a
read-retry operation on other pages exhibiting similar error char-
acteristics with the page to read. Doing so significantly reduces
the number of retry steps by starting a read (and retry) operation
with the VREF values close to the optimal read-reference voltage
(VOPT) values. However, this technique cannot completely avoid
read-retry: every read still incurs at least three retry steps in an
aged SSD [84]. This is because, in modern NAND flash memory,
the VTH levels of flash cells change quickly and significantly over
time, which makes it extremely difficult to identify the exact VREF
values that can avoid read-retry before reading the target page.

In this paper, we identify new opportunities to reduce the read-
retry latency by exploiting two advanced architectural features
widely adopted in modern SSDs: 1) the CACHE READ command [55,
67, 69] and 2) strong ECC engine [6, 7]. First, we find that it is
possible to reduce the total execution time of a read-retry operation
using the CACHE READ command that allows a NAND flash chip to
perform consecutive reads in a pipelined manner. Since each retry
step is effectively the same as a regular page read, the CACHE READ
command also enables concurrent execution of consecutive retry
steps in a read-retry operation.

Second, we find that a large ECC-capability margin exists in
the final retry step. Although a read-retry occurs when the read
page’s RBER exceeds the ECC capability (i.e., when there is no
ECC-capability margin), once a read-retry operation succeeds, it
allows the page to be eventually read without any uncorrectable
errors (i.e., there exists a positive ECC-capability margin in the final
retry step). We hypothesize that the ECC-capability margin is large
due to two reasons. First, a modern SSD uses strong ECC that can
correct several tens of raw bit errors in a codeword. Second, in the
final retry step, the page can be read by using near-optimal VREF
values that drastically decrease the page’s RBER. If we can leverage
the large ECC-capability margin to reduce the page-sensing latency
tR, it allows not only the final retry step to quickly read the page
without uncorrectable errors but also the earlier retry steps (which
would fail anyway even with the default tR) to be finished more
quickly. To validate our hypothesis, we characterize 1) the ECC-
capability margin in each retry step and 2) the impact of reducing
tR on the page’s RBER, using 160 real 3D TLC NAND flash chips.
The results show that we can safely reduce tR of each retry step
by 25% even under the worst-case operating conditions prescribed
by manufacturers (e.g., a 1-year data retention age [24] at 1.5K P/E
cycles [73]).

Based on our findings, we develop two new read-retry mecha-
nisms that effectively reduce the read-retry latency. First, we pro-
pose Pipelined Read Retry (PR2) that performs consecutive retry
steps in a pipelined manner using the CACHE READ command. Un-
like the regular read-retry mechanism that starts a retry step after
finishing the previous retry step, PR2 performs page sensing of a
retry step during data transfer of the previous retry step, which
removes data transfer and ECC decoding from the critical path of a
read-retry operation, reducing the latency of a retry step by 28.5%.
Second, we introduce Adaptive Read Retry (AR2) that performs each
retry step with reduced page-sensing latency (tR), leading to a fur-
ther 25% latency reduction even under the worst-case operating
conditions. Since reducing tR inevitably increases the read page’s
RBER, an excessive tR reduction can potentially cause the final
retry step to fail to read the page without uncorrectable errors. This,
in turn, introduces one or more additional retry steps, which could
increase the overall read latency. To avoid increasing the number
of retry steps, AR2 uses the best tR value for a certain operating
condition that we find via extensive and rigorous characterization
of 160 real 3D NAND flash chips.

Our two techniques require only small modifications to the SSD
controller or firmware but no change to underlying NAND flash
chips. This makes our techniques easy to integrate into an SSD
along with existing techniques that aim to reduce the number of
retry steps per read-retry operation [12, 13, 64–66, 77, 84]. Our
evaluation using twelve real-world workloads shows that our two
techniques, when combined, significantly improve the SSD response
time by up to 50.8% (35.2% on average) in a baseline high-end SSD.
Compared to a state-of-the-art research baseline [84], our proposal
reduces SSD response time by up to 31.5% (17% on average) in
read-dominant workloads.

This paper makes the following key contributions:

• To our knowledge, this work is the first to identify new oppor-
tunities to reduce the latency of each retry step by exploiting
advanced architectural features widely adopted in modern SSDs.

• Through extensive and rigorous characterization of 160 real 3D
TLC NAND flash chips, we make three new observations on mod-
ern NAND flash memory. First, a read-retry occurs frequently
even under modest operating conditions (Section 3.1). Second,
when a read-retry occurs, there is a large ECC-capability mar-
gin in the final retry step even under the worst-case operating
conditions (Section 5.1). Third, there is substantial margin in
read-timing parameters, which enables safe reduction of the
page-sensing latency in a read-retry operation (Section 5.2).

• Based on our findings and characterization results, we propose
two new techniques, PR2 and AR2, which effectively reduce
the latency of each retry step, thereby reducing overall read
latency. Our techniques require only very small changes to the
SSD controller or firmware. By reducing the latency of each retry
step while keeping the same number of retry steps during a
flash read, our proposal effectively complements existing tech-
niques [12, 13, 64–66, 77, 84] that aim to reduce the number of
retry steps, as we empirically demonstrate (Section 7).

2

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

2 BACKGROUND
We provide brief background on relevant aspects of NAND flash
memory necessary to understand the rest of the paper.

2.1 NAND Flash Organization
NAND flash memory is hierarchically organized. Figure 1 illustrates
the organization of a 3D NAND flash chip. Multiple (e.g., 24 to 176)
flash cells (Figure 1(a)) are vertically stacked and form a NAND
string (Figure 1(b)) that is connected to a bitline (BL). NAND strings
at different BLs compose a sub-block. The control gate of each
cell at the same vertical location in a sub-block is connected to
the same wordline (WL), which makes all the cells at the same
WL operate concurrently. A block consists of several (e.g., 4 to 8)
sub-blocks, and thousands (e.g., 3,776 [37]) of blocks constitute a
plane. A NAND flash chip contains multiple dies (Figure 1(c)), each
of which comprises multiple planes (e.g., two or four planes per
die [32]). Dies in a NAND flash chip can operate independently of
each other, while planes in a die can concurrently operate under
limited conditions as they usually share the same row decoder [31].

This	is	a	guide	for	the	width	of		a	figure.

Gate	Oxide

Tunnel	Oxide

(a) Flash cell (b) NAND block (c) NAND flash chip

Su
bs
tr
at
e

SRC

DRN

⋯

⋯

–
–
–
–

–
–
–
–

Figure	1

BL0 BL1 BLn

Die	1⋯Die	0⋯

Charge
Trap

Control
Gate

Peripheral
Plane	0

Blk	0
Blk	1⋯

Plane	1

Blk	0
Blk	1⋯

Sub-block

⋯ ⋯ ⋯

⋯
⋯

⋯

WL0
WL1

mWL
NAND
String

⋯

Figure 1: Organization of 3D NAND flash memory.

A flash cell encodes bit data using its threshold voltage (VTH)
level. As shown in Figure 1(a), a flash cell has a special material,
called a charge trap2, which can hold electrons without power
supply. The larger the number of electrons in the charge trap, the
higher the cell’s VTH level. In single-level cell (SLC) NAND flash
memory, for example, a cell can encode one bit of data by encoding
its high and low VTH levels as ‘0’ and ‘1’, respectively.

2.2 NAND Flash Operation
Three basic operations enable access to NAND flashmemory: 1) pro-
gram, 2) erase, and 3) read.
Program and Erase Operations. A program operation injects
electrons into a cell’s charge trap from the substrate by applying
a high voltage (> 20 V) to the WL, which increases the cell’s VTH
level (i.e., program operation can only change a cell’s data from ‘1’
to ‘0’ assuming the SLC encoding described above). As a set of flash
cells are connected to a single WL in NAND flash memory (i.e., the
same voltage is applied to the control gate of every cell in the same
WL), data is written at page granularity (e.g., 16 KiB) such that each
cell at the same WL stores one bit of the page.

An erase operation ejects electrons from a cell’s charge trap by ap-
plying a high voltage (> 20 V) to the substrate, which decreases the
cell’s VTH level. As program and erase operations are unidirectional,
a page needs to be erased first to program data (erase-before-write).

2It is also possible to design 3D NAND flash memory with floating-gate cells [92],
but most 3D NAND flash chips adopt cylindrical charge-trap cells (e.g., TCAT [33],
p-BICs [38], and SMArT [22]) [6, 7, 65, 66, 84].

A NAND flash chip performs an erase operation at block gran-
ularity (for cost reasons). This leads to a high erase bandwidth
because a block consists of hundreds (e.g., 576 [37]) or thousands
(e.g., 1,472 [44]) of pages, but also causes the erase latency tBERS
to be much longer than program latency tPROG (e.g., 3.5 ms vs.
660 𝜇s [37]).
ReadOperation.NANDflashmemory determines a cell’s data (i.e.,
the cell’s VTH level) by identifying whether current flows through
the corresponding BL. Figure 2 depicts the read mechanism of
NAND flash memory that consists of three phases: 1) precharge, 2)
evaluation, and 3) discharge [68].

This	is	a	guide	for	the	width	of		a	figure.

Initial	State

NA
ND

	S
tr
in
g

⋯
⋯

BL

VPRE

CSO

SA
SO –

+VSR
OFF

I.	Precharge
⋯

VPRE

SA

–

+VSR
OFF

II.	Evaluation

⋯
⋯

VPRE

SA

–

+VSR
ON

III.	Discharge

⋯
⋯

VPRE

SA

–

+VSR
OFF

⋯

Prog.
Erased

Prog.

Erased

0VREF VREF

Figure	2

❶

❷

❸

❹ ❺

❻

Figure 2: Read mechanism of NAND flash memory.

In the precharge phase (I in Figure 2), a NAND flash chip charges
each target BL and its sense-out (SO) capacitor CSO to a specific
voltage VPRE (1). The chip also applies the read-reference voltage
VREF to the target cell (i.e., WL) at the same time (2), which enables
the BL to sink current through the NAND string depending on the
cell’s VTH level (i.e., the BL can sink current when VTH < VREF).3
The chip then enters the evaluation phase (II in Figure 2) in which
it disconnects the BL from VPRE (3) and enables the sense amplifier
(SA) (4). If the target cell had been programmed (i.e., VTH > VREF),
the capacitance of CSO hardly changes as the BL cannot sink current.
In contrast, if the cell had been erased, charge in CSO quickly flows
through the BL, which rapidly decreases the SO-node voltage below
the SA’s reference voltage VSR. Finally, the chip discharges the BL
(III in Figure 2) to return to the initial state for future operations (5
and 6). As a result, the chip-level read latency tR can be expressed
as follows:

tR = 𝑁SENSE × (tPRE + tEVAL + tDISCH) (1)
where 𝑁SENSE is the number of sensing times required to read a
page, and tPRE, tEVAL, and tDISCH are the timing parameters
that define the latency for the precharge, evaluation, and discharge
phases, respectively. In SLC NAND flash memory, 𝑁SENSE = 1 be-
cause there are only two VTH states, while 𝑁SENSE increases up to
3 in TLC NAND flash memory to identify a specific VTH state out
of eight (= 23) different VTH states [6, 7].

Manufacturers carefully decide the three timing parameters to
ensure correct operation. For example, if tPRE is too short to
fully charge the BL and CSO, VSO can be lower than VSR in the
evaluation phase even when the target cell is programmed. A too-
short tDISCH can also lead to raw bit errors by leaving some BLs
partially charged. Since it takes more time to stabilize all BLs when
there are some partially-charged BLs compared to when all BLs
are fully discharged, the next precharge phase would likely fail to
properly set all BLs to VPRE within the tPRE latency.

3To ensure that only the target cell’s VTH level affects the current through the
BL, the gate voltage of all other cells in the same NAND string is set to VPASS (> 6V),
which is much higher than the highest VTH level of any flash cell [6, 7, 12]

3

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

2.3 Reliability Problems in NAND Flash
In NAND flash memory, a variety of sources including program
interference [8, 13, 48, 79], read disturbance [11, 28], and data reten-
tion loss [12, 14, 15, 66] introduce bit errors in stored data [6, 7, 9, 10].
Figure 3(a) shows the VTH distribution of a WL in SLC NAND flash
memory and how it is affected by various error sources. Reading
or programming a flash cell (i.e., WL) slightly increases the VTH
level of other cells (in other WLs) in the same block by unintention-
ally injecting electrons to their charge traps (i.e., read disturbance
and program interference). A flash cell also leaks electrons in its
charge trap over time (i.e., retention loss), which decreases the
cell’s VTH level. If a cell’s VTH level moves beyond the VREF value,
a bit error occurs as the cell’s data is sensed to be different from
the data originally programmed into it. Prior works show that re-
tention loss is the dominant source of errors in 3D NAND flash
memory [7, 49, 65, 66, 84]. Compared to 2x-nm planar NAND flash
memory, 3D NAND flash memory experiences 40% less program
interference and 96.7% weaker read disturbance while it suffers
from a larger number of retention errors that occur faster [66].

This	is	a	guide	for	the	width	of		a	figure.

Figure	3

#	
of
	ce
lls

111
E

110
P1

100
P2

000
P3

010
P4

011
P5

001
P6

101
P7

MSB LSB

CSB

D
es
ig
n	
Li
m
it

#	
of
	ce
lls

Erased	(E)
0

Programmed

(b) TLC NAND flash memory

(a) SLC NAND flash memory

1

Retention	loss Interference/
disturbance

Errors

Original	
distribution

Distribution	after	
retention	age

VREF
VTH

VTH
margin	VTH

margin	VTH

VREF0 VREF1 VREF2 VREF3 VREF4 VREF5 VREF6

Figure 3: VTH distribution of NAND flash memory cells.

A flash cell becomes more susceptible to errors as it experiences
more program and erase (P/E) cycles [10, 35, 64]. The high voltage
applied to the WL and substrate during program and erase opera-
tions damages the flash cell’s tunnel oxide, which causes its charge
trap to more easily get/leak electrons. After a certain number of
P/E cycles, a flash cell is worn out (i.e., it cannot be used any longer)
as it cannot retain its stored data for a required retention age, i.e.,
how long data is stored after it is programmed (e.g., 1 year [24, 34]).

The multi-level cell (MLC) technique aggravates the reliability
problems in NAND flash memory. As shown in Figure 3(b), TLC
NAND flashmemory stores three bits in a single cell using eight (i.e.,
23) different VTH states (i.e., levels). To pack more VTH states within
the same voltage window, MLC NAND flash memory inevitably
narrows the margin between adjacent VTH states, which increases
the probability that a cell programmed into a particular VTH state
is misread as belonging to an adjacent VTH state.

2.4 Reliability Management in NAND Flash
Error-correcting Codes (ECC). To guarantee the reliability of
stored data, it is common practice in modern SSDs to employ error-
correcting codes (ECC). ECC can detect and correct bit errors within
a unit of data, called a codeword, by storing redundant bits (i.e., ECC
parity) into the codeword. To address significant reliability degra-
dation in modern NAND flash memory, a modern SSD typically

adopts sophisticated ECC, such as Bose-Chauduri-Hocquenghem
(BCH) [5] and low-density parity-check (LDPC) [27] codes, which
can correct up to several tens of raw bit errors within a codeword
(e.g., 72 bit errors per 1-KiB codeword [73]).
Read-RetryOperation.AsmodernNANDflashmemory becomes
more susceptible to errors, it is challenging even for strong ECC to
guarantee the reliability of stored data: a page’s raw bit-error rate
(RBER, the fraction of error bits in a codeword before ECC) quickly
increases beyond the ECC capability (i.e., the error-correction ca-
pability of ECC, defined as the number of error bits correctable
per codeword). This significantly degrades the lifetime of NAND
flash memory since a block’s lifetime is determined by the number
of P/E cycles that can be performed until the block can retain the
RBER lower than the ECC capability for a minimum retention re-
quirement [6, 24, 34]. Using more sophisticated ECC (with higher
ECC capability) can mitigate the lifetime degradation, but it also
introduces significant area and latency overheads [6, 7, 15].

To address this, a modern SSD commonly adopts a mechanism
called read-retry [9, 10, 26, 54, 84, 93]. Figure 4 shows how read-
retry reduces a page’s RBER to be lower than the ECC capability.
As shown in Figure 4(a), retention loss shifts and widens the VTH
distribution of each state, increasing the number of flash cells whose
VTH level moves beyond the corresponding VREF value (e.g., VREF𝑥
for the P(𝑥 + 1) state). When the number of such cells becomes
higher than the ECC capability, a read failure occurs, and the SSD
controller invokes a read-retry operation for the page. The read-
retry operation reads the page againwith different VREF values (e.g.,
VRR𝑖 at the 𝑖-th read-retry step in Figure 4(a)), which decreases the
number of cells misread as belonging to another VTH state. The
controller performs further retry steps until it either successfully
reads the page without uncorrectable errors or fails to reduce the
page’s RBER to a value lower than the ECC capability even after
trying all of the VREF values that are available to the mechanism.

How to adjust the VREF values is the most critical design choice
in the read-retry mechanism. The VTH distribution of each state is
very narrow in modern MLC NAND flash memory to store𝑚 bits
per cell using 2𝑚 VTH states (e.g., 16 VTH states in QLC NAND flash
memory). This causes the page’s RBER to be extremely sensitive
to the distance of the VREF value from the optimal read-reference
voltage VOPT. In Figure 4(a), for example, we can see that VRR(𝑁−1)

This	is	a	guide	for	the	width	of		a	figure.

…

Pr
ob
ab
ili
ty

de
ns
ity

Px
state

P(x-1)
state

Right	after	programmingAfter	retention	loss

…
P(x+1)
state

Px
state

… P(x+1)
state

VREF(x-1) VREFx

VTH

VOPT
VRRN VRR(N-1)

VREFx
VRR1

VREF

Figure	4

Read	retry:	Adjusting

(a) VREF adjustment
in a read-retry operation

0

100

200

300

400

500

600

#	
of
	ra
w
	b
it	
er
ro
rs
	p
er
	K
iB

#	of	retry	steps
NN-1N-2N-3⋯

N	=	16

N	=	21

ECC	capability

(b) RBER reduction
in the last retry steps

Figure 4: RBER reduction via the read-retry mechanism.

4

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

leads to a significantly larger number of bit errors (i.e., a wider gray
area before VRR(𝑁−1)) compared to VRR𝑁 , which is closer to VOPT.

Through extensive profiling of NAND flash chips, manufactur-
ers provide sets of VREF values used for a read-retry operation
which guarantee the VREF values in the final retry step to be sub-
stantially close to VOPT. Figure 4(b) shows how two pages’ RBER
values change in the last four retry steps when reading the two
pages requires 16 and 21 retry steps, respectively. We measure the
RBER values from real 3D TLC NAND flash chips (see Section 4
for detailed description of our infrastructure and methodology).
As shown in Figure 4(b), each page’s RBER drastically decreases in
the final (i.e., 𝑁 -th) retry step due to the use of near-optimal VREF
values, enabling the correct reading of the page.

The read-retry mechanism is essential improving reliability and
enhancing SSD lifetime, but a read-retry operation can significantly
degrade SSD performance due to multiple retry steps it causes. In
general, the page-read latency tREAD can be formulated as follows:

tREAD = tR + tDMA + tECC + tRETRY (2)
where tR, tDMA, tECC, and tRETRY are the latencies of sensing
the page data (Equation (1)), transferring the sensed data from the
chip to the SSD controller, decoding the data with the ECC engine,
and performing a read-retry operation, respectively. When a page
read requires 𝑁RR (≥ 0) retry steps, tRETRY can be expressed as
follows [12, 84]:

tRETRY = 𝑁RR × (tR + tDMA + tECC) . (3)
Since a read-retry operation increases tREAD linearly with 𝑁RR, it
can significantly degrade SSD performance.

3 MOTIVATION
In this section, we 1) present read-retry characteristics of modern
NAND flash memory, and 2) introduce two new opportunities for
reducing the read-retry latency.

3.1 Read-Retry in Modern NAND Flash
To understand how many read-retry operations occur in modern
NAND flash memory and how frequently they occur, we character-
ize 160 real 3D TLC NAND flash chips under different operating
conditions (see Section 4 for detailed description of our infrastruc-
ture and methodology). We measure the number of read-retry steps
for more than 107 pages that are randomly selected from the 160
NAND flash chips, under different operating conditions. Figure 5
shows the probability of occurrence of different numbers of retry
steps (in gray scale) for different P/E-cycle counts and retention
ages. A box at (𝑥 , 𝑦) represents the probability that a read requires
a read-retry operation with 𝑦 retry steps under 𝑥-month retention
age. Figure 5 plots the probability under three different P/E-cycle
counts, 0 (left), 1K (center), and 2K (right).

We make two observations from the results. First, a page read
introduces a significant number of retry steps especially when the
page experiences more P/E cycling and/or has a longer retention
age. While a fresh page (i.e., with no P/E cycling and 0 retention
age) can be read without a read-retry, the average number of retry
steps significantly increases to 19.9 under a 1-year retention age at
2K P/E cycles, which in turn increases tREAD by 21× on average.
Second, a read-retry occurs very frequently even under modest
operating conditions, introducing a number of retry steps. Figure 5

0	P/E	cycles 1K	P/E	cycles 2K	P/E	cycles

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

This	is	a	guide	for	the	width	of		a	figure.

5

10

15

20

25

Retention	age	[months]

0

#	
of
	r
et
ry
	s
te
ps

Pr
ob
ab
ili
ty

0

1

0.2

0.4
0.6
0.8max.

avg.
min.

Figure	5

54.4%

100%

Figure 5: Read-retry characteristics of 160 3D TLC NAND
flash memory chips under different operating conditions.

shows that 54.4% of reads incur at least seven retry steps under a 6-
month retention age even when the pages have never experienced
P/E cycling (the dot-circle in the left plot). At 1K P/E cycles, at
least eight read-retry steps are needed to read a page only after a
3-month retention age (the dot-circle in the center plot of Figure 5).
This means that the performance degradation due to read-retry
operations can be significant not only under worst-case conditions
but also under the common case.

Our characterization results clearly show the importance of mit-
igating the read-retry overhead. Prior works propose several tech-
niques that reduce the number of retry steps [12, 13, 64–66, 77, 84],
but read-retry is difficult to completely avoid in modern SSDs as
VOPT quickly and significantly changes over time. For example, an
existing technique can reduce the average number of read-retry
steps by about 70% under a 1-year retention age at 2K P/E cycles,
but for every page read, it requires at least three retry steps [84].

3.2 Optimization Opportunities for Read-Retry
We identify two new opportunities to reduce tRETRY by exploit-
ing two advanced architectural features in modern SSDs: 1) the
CACHE READ command and 2) the strong ECC engine.

3.2.1 Exploiting the CACHE READ Feature. Modern NAND
flash memory supports an advanced command called CACHE READ
[55, 67, 69, 71, 83, 87] that can effectively reduce tREAD by pipelin-
ing consecutive read requests.4 Early generations of NAND flash
memory support the CACHE READ feature only for sequential reads
(i.e., only when the target page of an incoming read is physically next
to the currently accessed) [69]. However, to improve the random-
read performance, which is critical in popular applications [58, 80],
such as key-value stores [4] and graph analytics [95], manufactur-
ers including Samsung, Micron, and Toshiba have extended the
CACHE READ command to support any consecutive page reads re-
gardless of the locations of the pages to be read [55, 67, 71, 83, 87].

Figure 6 shows how an SSD controller reduces the latency of
a page read using the CACHE READ command. As shown in Fig-
ure 6(a), with the basic PAGE READ command, an SSD controller
can start reading page B only after finishing the data transfer of
page A. (The data of page A is decoded by the ECC engine dedicated
to the channel [6], so the SSD controller can concurrently perform
sensing of page B with ECC decoding of page A.) In contrast, as
shown in Figure 6(b), the SSD controller can issue a CACHE READ
command for page B before starting the data transfer of page A so

4The CACHE READ command requires an additional cache (i.e., page buffer) in the
NAND flash chip to store sensed data while transferring the previously-sensed data to
the SSD controller.

5

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

This	is	a	guide	for	the	width	of		a	figure.

REQ1:	READpage	A

page A:(a)

(b)

REQ2:	READpage	B

REQ2	latency

REQ2	latency

PAGE READ(A)

PAGE READ(A)

tR tDMA tECC
tR tDMA tECCpage B:

tR tDMA tECC
tR tDMA tECC

page A:
page B:

PAGE READ(B)

CACHE READ(B)

Figure	6

Saved	cycles
Figure 6: Comparison of (a) basic PAGE READ command and
(b) CACHE READ command (see page B in each figure).

that the chip can concurrently perform both the data transfer of
page A and sensing of page B. Since each retry step of a read-retry
operation is effectively the same as a regular page read, we can
also perform consecutive retry steps in a pipelined manner via the
CACHE READ command, which in turn reduces the total execution
time of a read-retry operation.

3.2.2 Exploiting Large ECC-Capability Margin. We find that
there would be a large ECC-capability margin5 when a read-retry
occurs. This may sound contradictory as a read-retry occurs only
when the page’s RBER exceeds the ECC capability, i.e., when there
is no ECC-capability margin. However, when a read-retry operation
succeeds, the page is eventually read without any uncorrectable
errors, which means that there exists a positive ECC-capability
margin in the final retry step if it succeeds. We hypothesize that
the ECC-capability margin is large due to two reasons. First, as
explained, a modern SSD uses strong ECC that can correct several
tens of raw bit errors in a codeword. Second, in the final retry
step, the page can be read by using near-optimal VREF values that
drastically decrease the page’s RBER as explained in Section 2.4.

If we can empirically demonstrate and methodically leverage
the large ECC-capability margin in the final retry step to reduce
the page-sensing latency tR, doing so allows us to reduce tRETRY
considerably. This is because tR is the dominant factor in tRETRY
especially when we use the CACHE READ command in a read-retry
operation. Although reducing tR may increase the page’s RBER as
explained in Section 2.2, we can safely reduce tR for a read-retry
operation as long as the number of additional bit errors introduced
by the reduced tR is lower than the large ECC-capability margin
in the final retry step. We hypothesize that this is the common case
since manufacturers pessimistically set the timing parameters to
cover for the worst-case operating conditions and process varia-
tion [19, 45, 52, 53, 74, 75]. For example, an outlier BL can have
much higher capacitance than other BLs due to its geometry (e.g.,
thick wire, narrow contacts, and high parasitic capacitance), which
significantly increases the time for the BL to be fully charged. Even
if the fraction of such BLs may be very low, eliminating all of them
from a chip either requires extreme effort or leads to a significant
loss in chip yield. Consequently, such outlier BLs dictate tR, even
though most BLs can correctly operate with reduced tR.

4 CHARACTERIZATION METHODOLOGY
To test our hypothesis in Section 3.2.2, we characterize 1) the ECC-
capability margin in the final retry step and 2) the reliability impact
of tR reduction, using 160 real 3D TLC NAND flash chips.

5ECC-Capability Margin = Maximum Number of Raw Bit Errors a Given ECC can
Correct per Codeword − Number of Raw Bit Errors Present in a Codeword.

Infrastructure. We use an FPGA-based testing platform that con-
tains a custom flash controller and a temperature controller. The
flash controller allows us to access a NAND flash chip using all
the commands implemented in the chip. It supports not only basic
read/program/erase operations, but also dynamic change of timing
parameters for a read by using the SET FEATURE command [90].
The temperature controller maintains the temperature of a NAND
flash chip within ±1◦C of the target temperature. This allows us
to test a NAND flash chip under different operating temperatures
(i.e., the temperature when a page is read or programmed) and ac-
celerate retention loss based on Arrhenius’s Law [2] (e.g., 13 hours
at 85◦C ≈ 1 year at 30◦C). We characterize 160 48-layer 3D TLC
NAND flash chips in which ⟨tPRE, tEVAL, tDISCH⟩ = ⟨24 𝜇s,
5 𝜇s, 10 𝜇s⟩ (i.e., tPRE:tEVAL:tDISCH ≈ 5:1:2) by default.
Methodology. To minimize the potential distortions in our charac-
terization results, we randomly select 120 blocks from each of the
160 3D NAND flash chips at different physical block locations and
perform read tests for every page in each selected block. We test
a total of 3,686,400 WLs (11,059,200 pages) to obtain statistically
significant experimental results. Unless specified otherwise, we
report a representative (i.e., maximum and/or average) value across
all the tested pages from the 160 chips. For a read test of a page, we
first read the target page with default read-timing parameters and
measure the page’s RBER. When a read failure occurs, we perform
a read-retry operation while measuring the page’s RBER in each
retry step. Then, using the same VREF values used in the final retry
step, we repeat reading of the page and measure its RBER while
reducing read-timing parameters, in order to evaluate the impact of
reducing the timing parameters on the RBER in the final retry step.

We perform read tests while varying the P/E-cycle count, re-
tention age, and operating temperature, all of which are shown
to significantly affect a flash cell’s error behavior [6, 7, 9, 10, 12–
14, 64–66, 84]. We follow the test procedures of the JEDEC industry
standard [34] in each read test. To increase the P/E-cycle count of
a block, we repeat the cycle of 1) programming every page in the
block with random data6 and 2) erasing the block. For each target
P/E-cycle count, we test each page while varying the retention age
and operating temperature by using the temperature controller.

5 CHARACTERIZATION RESULTS
We present and analyze our real-device characterization results
on 1) the ECC-capability margin in the final retry step and 2) the
reliability impact of reducing read-timing parameters, collected
across 160 3D TLC NAND flash chips.

5.1 ECC-Capability Margin in Final Retry Step
Figure 7 depicts𝑀ERR(𝑃𝐸𝐶 , 𝑡RET), i.e., the maximum number of bit
errors per 1-KiB data in the final read-retry step under different P/E-
cycle counts (𝑃𝐸𝐶) and retention ages (𝑡RET, unit: months)7, at three
different operating temperatures: (a) 85◦C, (b) 55◦C, and (c) 30◦C.
We also plot the ECC capability at 72 errors per 1 KiB. We make
three key observations. First, there is a large ECC-capability margin

6Although a page’s RBER has data-pattern dependence [6, 9, 15, 66], we use
random data because modern SSDs commonly use a data randomizer [6, 17, 43, 57] to
avoid the worst-case data patterns that may cause unexpected read failures.

7A flash cell’s retention loss is significantly affected by ambient temperature. We
show the effective retention age at 30◦C, following an industrial standard that specifies
the retention requirements of NAND flash-based SSDs [34].

6

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

in the final retry step even under the worst-case operating conditions
prescribed by manufacturers (e.g., a 1-year retention age [24] at
1.5K P/E cycles [73]). We observe that even𝑀ERR(2K, 12) at 30◦C is
quite low, leaving a margin as large as 44.4% of the ECC capability.
This shows that, although strong ECC is an inevitable choice for a
modern SSD, its high ECC capability is largely underutilized when
a read-retry eventually succeeds, due to the use of near-optimal
VREF values in the final retry step.

This	is	a	guide	for	the	width	of		a	figure.

0 1K 2KPEC:

0

20

40

60

80

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

(a) 85°C (b) 55°C (c) 30°C

ECC	capability

Retention	age	(t)	[months]

M
ER
R

Figure	7

RET

ECC-capability	
margin

Figure 7: ECC-capability margin in the final read-retry step.

Second, the ECC-capability margin decreases as the page experi-
ences more P/E cycling and longer retention age (e.g., 𝑀ERR(0, 3)
= 15 while𝑀ERR(1K, 12) = 30 at 85◦C). This is due to the inherent
error characteristics of NAND flash memory. In fact, unlike what is
idealistically shown in Figures 3 and 4,8 two adjacent VTH states
slightly overlap even right after programming a fresh page, which
makes no VREF value capable of achieving zero RBER in modern
NAND flash memory [6, 12, 64–66]. As P/E cycling and retention
age shift and widen VTH state distributions, even the optimal read-
reference voltage cannot completely avoid the RBER increase.

Third, operating temperature also affects the ECC-capability
margin in the final retry step, but its impact is not as significant as
P/E cycling and retention age. Compared to 85◦C, 𝑀ERR at 30◦C
and 55◦C is higher by 5 and 3 errors, respectively, all other condi-
tions being equal. In 3D NAND flash memory, an electron’s mobility
in the poly-type channel, which decreases with operating tempera-
ture, is the dominant factor affecting the cell current through the
BL [3]. Since an erased cell might be recognized as programmed
due to reduced current,𝑀ERR slightly increases as operating tem-
perature reduces. We observe the same relationship in all the tested
chips (i.e., the lower the temperature, the higher the page’s RBER).

We draw two conclusions based on our observations. First, we
can use the large ECC-capability margin in the final retry step to
reduce tRETRY, unless reduction of read-timing parameters sig-
nificantly increases the page’s RBER. Second, the ECC-capability
margin highly depends on operating conditions, so we should care-
fully decide the reduction amount considering the current operating
conditions.

5.2 Reliability Impact of Reducing
Read-Timing Parameters

We first present the effect of reducing individual read-timing param-
eters (Section 5.2.1). We then show the effect of reducing multiple
timing parameters simultaneously (Section 5.2.2) and summarize

8The VTH distribution of NAND flash memory is usually described with simplified
figures (similar to Figures 3 and 4) to ease understanding [35, 65, 66, 79, 84].

our characterization results with the final timing parameters we
decide for reliable tRETRY reduction (Section 5.2.3).

5.2.1 Reduction of Individual Parameters. We first evaluate
the effect of reducing individual read-timing parameters under
different operating conditions. Figure 8 shows Δ𝑀ERR, the max-
imum increase of raw bit errors per 1-KiB data when we read a
page at 85◦C9 with reduced (a) tPRE, (b) tEVAL, or (c) tDISCH,
compared to when using the default value.

We make three observations from the results. First, it is pos-
sible to safely reduce read-timing parameters for optimizing the
read-retry latency. Even under a 1-year retention age at 2K P/E
cycles (where 𝑀ERR = 35), we can safely reduce tPRE, tEVAL,
and tDISCH by 47%, 10%, and 27%, respectively. Second, reduc-
tion in tEVAL or tDISCH leads to faster increase in 𝑀ERR com-
paredtPRE, which implies that manufacturers set the defaulttPRE
more pessimistically than the other parameters. As explained in Sec-
tion 2.2, the precharge phase needs to stabilize every BL at a certain
voltage level (VPRE), which requires a large timing margin in tPRE
for outlier BLs. On the other hand, the discharge phase requires
a relatively-small timing margin in tDISCH compared to tPRE
because it only pulls out VPRE from BLs. Third, P/E cycling and
retention age also affect the increase in bit errors due to reduced
read-timing parameters as well as the ECC-capability margin in
the final retry step. In particular, we observe non-trivial impact of
retention age on Δ𝑀ERR. When reducing tPRE by 47%, for exam-
ple, Δ𝑀ERR(2K, 12) is 60% higher than Δ𝑀ERR(2K, 0) (i.e., a 1-year
retention age increases Δ𝑀ERR by 60% at 2K P/E cycles) as shown
in Figure 8(a).

We draw two conclusions based on our observations. First, we
can significantly reduce tR in a read-retry operation even under the
worst-case operating conditions prescribed by manufacturers. Our
results demonstrate that tPRE can be safely reduced by at least
40% under every tested condition, which leads to a 25% reduction
in tR. Second, it is very cost-ineffective to reduce tEVAL. Reducing
tEVAL by 20% introduces 30 additional bit errors (i.e., 41.7% of the

0

20

40

60

80

0

20

40

60

80

This	is	a	guide	for	the	width	of		a	figure.

(a) ΔtPRE

(b) ΔtEVAL (c) ΔtDISCH

ΔM
ER
R

PEC: 0 1K 2K [months]: 0 6 12t	RET

Figure	8

ΔM
ER
R

0% 20% 40% 60%

0% 20% 0% 20% 40%

Safe	reduction	point	@	PEC=2K,	tRET=12

Safe	reduction	point	@	PEC=1K,	tRET=0

60%	increase
47%

Figure 8: Effect of reducing each read-timing parameter.

9We show the effect of operating temperature in Section 5.2.3.

7

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

ECC capability) even for a fresh page. This significantly decreases
the chance to reduce the other parameters while achieving only
2.5% tR reduction due to the low contribution of tEVAL to tR (1/8
tR only). Therefore, we decide to exclude tEVAL from our later
analyses.

5.2.2 Reduction ofMultiple Parameters. Although our results
of the previous experiments promise a great opportunity for reduc-
ing each of tPRE and tDISCH alone, reducing one may decrease
the chance of reducing the other (because the discharge phase of
a read affects the precharge phase of the next read as explained
in Section 2.2). To identify the potential for reducing both timing
parameters simultaneously, we test all possible combinations of
(tPRE, tDISCH) values while reducing tPRE by up to 60% and
tDISCH by up to 40%. Figure 9 plots 𝑀ERR(𝑃𝐸𝐶 , 𝑡RET), the max-
imum number of bit errors per 1-KiB data in the final retry step
when we read test pages while reducing tPRE and tDISCH simul-
taneously under five different operating conditions.

We make three key observations based on the results. First, re-
ducing the two timing parameters simultaneously introduces more
additional bit errors than reducing each parameter individually. For
example, as shown in Figures 8(a) and 8(c), when we reduce tPRE
by 54% and tDISCH by 20% individually, Δ𝑀ERR(1K, 0) is 35 and
8, respectively. Unfortunately, simultaneous reduction of the two
timing parameters increases𝑀ERR far beyond the ECC capability;
see the green line with marker × in Figure 9(a) (i.e., ΔtDISCH
=20%), which is outside the plot at ΔtPRE = 54%. Second, it is
more beneficial to reduce tPRE than to reduce tDISCH in most
cases.𝑀ERR is smaller when ⟨ΔtPRE, ΔtDISCH ⟩ = ⟨𝑥%, 𝑦%⟩ com-
pared to when ⟨ΔtPRE, ΔtDISCH ⟩ = ⟨𝑦%, 𝑥%⟩ for most values
of 𝑥 and 𝑦. Third, despite the higher reliability impact of tDISCH
over tPRE (discussed in Section 5.2.1), reducing tDISCH by 7%
hardly increases the number of bit errors (by 4 at most) under every
operating condition.

Based on our observations, we conclude that it is effective to use
the ECC-capability margin in the final retry step for only reducing
tPRE. Although the increase in additional bit errors from reducing
tDISCH by 7% is quite low (up to 4 additional bit errors), the cost

ECC	capability

ΔtDISCH:
7%

0%
14%

20% 27%
34% 40%

0

20

40

60

80

(a) (1K, 0) (b) (2K, 0)

0

20

40

60

80

(c) (0K, 12) (d) (1K, 12) (e) (2K, 12)

ΔtPRE:

This	is	a	guide	for	the	width	of		a	figure.

ΔtPRE:

Figure	9

M
ER
R

M
ER
R

(PEC,	t):RET

(PEC,	t):RET

0% 20% 40% 60% 0% 20% 40% 60%

0% 20% 40% 60% 0% 20% 40% 60% 0% 20% 40% 60%

Figure 9: Effect of reducing multiple read-timing parame-
ters, tPRE and tDISCH, under different P/E-cycle counts
(PEC) and retention ages (𝑡RET, unit: months).

of doing so is larger than the benefit: considering that the fraction
of tDISCH in tR is only 25%, a 7% reduction in tDISCH merely
reduces tR by 1.75% (i.e., 0.07 × 0.25), while its cost could be up to
5.6% of the ECC capability (i.e., up to 4 additional bit errors under
the ECC capability of 72 errors per 1 KiB).

5.2.3 Reliable Reduction of tPRE . As the final step of our char-
acterization, we analyze the impact of operating temperature on
the amount of tPRE reduction. Figure 10 plots Δ𝑀ERR, the increase
in the maximum number of raw bit errors in the final retry step
when a NAND flash chip operates at 30◦C and 55◦C, compared to
at 85◦C. We observe that operating temperature affects Δ𝑀ERR in a
similar way as it affects𝑀ERR: the lower the operating temperature,
the larger the Δ𝑀ERR, and the temperature effect becomes more
significant under a longer retention age and higher P/E-cycle count.
The increase in Δ𝑀ERR is also small: it is only up to 7 additional bit
errors even under a 1-year retention age at 2K P/E cycles.

55°C: 0	PEC 1K 2K 30°C: 0	PEC 1K 2K
7

5

3

7

5

3

(a) tRET = 0 (b) tRET = 12 months
ΔtPRE:

This	is	a	guide	for	the	width	of		a	figure.

ΔM
ER
R

Figure	10

0% 20% 40% 60% 0% 20% 40% 60%

Figure 10: Effect of operating temperature on the number of
additional errors due to tPRE reduction.

Based on these results, we conclude that we should incorporate
a safety margin into reduced tPRE to ensure that a page’s RBER is
lower than the ECC capability in the final retry step under vary-
ing operating temperature. It is also possible to profile the optimal
tPRE for each combination of (𝑃𝐸𝐶 , 𝑡RET, 𝑇) where 𝑇 is the oper-
ating temperature. However, we decide to determine a good tPRE
value by considering only 𝑃𝐸𝐶 and 𝑡RET, and plan for sufficient
ECC capability that can correct temperature-induced additional
errors. This is due to two reasons. First, the effect of operating
temperature on𝑀ERR is quite small compared to the effect of 𝑃𝐸𝐶
and 𝑡RET, and thus operating temperature does not significantly
affect the reduction in tPRE. When we reduce tPRE alone by less
than 40%, a substantial ECC-capability margin remains to correct
temperature-induced additional errors under every operating con-
dition. Second, our decision greatly reduces profiling effort and
eliminates the need to monitor a wide range of temperatures. In
particular, operating temperature may be difficult or costly to accu-
rately measure for each retry step as it changes much more quickly
than 𝑃𝐸𝐶 and 𝑡RET.

Figure 11 shows the values we select for safely reducing the read-
retry latency under different operating conditions. To minimize
the probability of increasing the number of retry steps for outlier
pages (which could potentially be missed in the set of pages we
test experimentally), we ensure that the selected tPRE value for
each operating condition guarantees an ECC-capability margin of
14 bits in the final retry step (7 bits for temperature-induced errors
and 7 bits for errors in outlier pages). We conclude that, even with
the 14-bit margin, we can significantly reduce tPRE by at least 40%
(up to 54%) under any operating condition, as shown in Figure 11.

8

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

0 P/E	cycles 1K	P/E	cycles 2K	P/E	cycles

FailFailFail

0

20

40

60

80

100+60%

40%

0%

20%

3 6 9 120

Δt
PR
E Minimum	tPRE

Figure	11

This	is	a	guide	for	the	width	of		a	figure.

3 6 9 120 3 6 9 120

w/	safety	margin

M
ER
R

Retention	age	(t)	[months]RET

max.	reduction
=	54%

min.	reduction
=	40%

Figure 11: Minimum tPRE for safe tRETRY reduction.

6 READ-RETRY OPTIMIZATIONS
Motivated by our new experimental findings from real 3D NAND
flash chips, we propose two new techniques that effectively re-
duce the read-retry latency: 1) Pipelined Read-Retry (PR2) and 2)
Adaptive Read-Retry (AR2).

6.1 PR2: Pipelined Read-Retry
PR2 reduces the total execution time of a read-retry operation by
pipelining consecutive retry steps using the CACHE READ com-
mand. Figure 12 compares PR2 with a regular read-retry oper-
ation. As shown in Figure 12(a), the existing read-retry mecha-
nism [6, 7, 9, 10, 26, 54, 84, 93] starts a new retry step after checking
whether ECC decoding for the previous step succeeds, which places
tECC on the critical path of tRETRY (Equation (3)).10 the previous
retry step is completed because speculatively starting a new retry
step could delay other user requests waiting for the completion of
the on-going read (and retries), if the speculative retry step ends
up being not needed. In contrast, as shown in Figure 12(b), PR2
starts the next retry step right after the chip completes page sensing
of the current step (i.e., after tR of the current step) by issuing a
CACHE READ command on the same target page. Since the SSD
controller can return the read page once ECC decoding succeeds,
when the read request requires 𝑁RR retry steps, tRETRY in PR2
can be formulated as follows:

tRETRY = 𝑁RR × tR + tDMA + tECC. (4)
Thus, PR2 reduces tRETRY by (𝑁RR −1)×(tDMA +tECC) over
the regular read-retry mechanism (Equation (3)). Considering that
many reads require multiple retry steps even under modest operat-
ing conditions as we observe in Section 3.1 (e.g., every read requires
more than eight retry steps under a 3-month retention age at 1K
P/E cycles as shown in Figure 5), PR2 significantly improves SSD
performance by effectively reducing tRETRY.

When a read requires 𝑁RR retry steps, PR2 speculatively starts
the (𝑁RR + 1)-th retry step that is unnecessary to read the page.
This unnecessarily-started retry step could negatively affect SSD
performance by delaying other operations that may exist in the
request queue, waiting for the completion of the read. PR2 min-
imizes this potential performance penalty by using the RESET
command that immediately terminates any on-going request that
is being performed in the chip. As described in Figure 12(b), the
SSD controller issues a RESET command as soon as ECC decoding
succeeds, which takes only a few microseconds to terminate the
unnecessarily-started retry step (the reset latency tRST = 5 𝜇s for
a read operation [70]).

10The SSD controller can issue a new PAGE READ command before starting ECC
decoding of the currently read-out page (as described in Figure 6(a)). However, prior
works [9, 10, 26, 54, 84, 93] assume that a new retry step starts after

Retry	1
Retry	2

Retry	(NRR – 1)
Retry	NRR

⋯

PAGE READ(A)
ECC	fail

(a)

RESET

tR
tDMA
tECC
tRST

Figure	12

This	is	a	guide	for	the	width	of		a	figure.

READ	A

success
ECC	

Return	A

⋯

tRETRY

tRETRY

CACHE READ(A)
PAGE READ(A)
ECC	fail

⋯

Retry	1
Retry	2

Retry	(NRR–1)
Retry	NRR

⋯

READ	A

Retry	(NRR+1) Unnecessary

PAGE READ(A)

success
ECC	

Return	A

(b)

cycles
Saved

Figure 12: Comparison of (a) regular read-retry and (b) PR2.

Overhead. PR2 requires no change to NAND flash chips. It requires
only slight modifications to the SSD controller or firmware to issue
1) a CACHE READ command for each retry step immediately after
page sensing of the previous step and 2) a RESET command as
soon as ECC decoding succeeds. The performance overhead of PR2
is also small. The unnecessarily-started retry step could delay other
operations (that are waiting for the completion of the read in the
request queue) only for several microseconds at most. When the
read requires more than one retry step, which is the common case
(see Section 3.1), the latency benefit of PR2 is always higher than
its latency overhead.

6.2 AR2: Adaptive Read-Retry
AR2 optimizes the read-retry latency by using the large ECC-
capability margin in the final retry step to reduce tPRE (and thus
tR) for every retry step (not only for the final step). AR2 carefully
decides the tPRE reduction amount depending on the current op-
erating conditions to avoid additional retry steps introduced by
tPRE reduction. To this end, we propose that SSD manufacturers
1) identify the best tPRE values at different operating conditions
for each NAND flash chip via offline profiling of the chip and 2)
incorporate the information into the SSD in the form of a simple
table, i.e., Read-timing Parameter Table (RPT). The RPT stores the
best profiled tPRE value for a given P/E-cycle count and retention
age. At runtime, the SSD controller queries the RPT.

Figure 13 illustrates how the SSD controller can reduce the read-
retry latency using AR2.11 Once a read failure occurs, 1 AR2 first
decides the appropriate tPRE reduction amount by querying the
RPT using the P/E-cycle count and retention age of the correspond-
ing block.12 2 AR2 then changes the target chip’s tPRE value by
issuing a SET FEATURE command, and 3 repeats performing retry
steps until the page is successfully read without any uncorrectable
error or until all possible retry steps are exhausted. Finally, 4 AR2
rolls back the target chip’s tPRE value to the default tPRE value
for future operations.

As explained above, in AR2, the SSD controller changes thetPRE
value only once (2) for a read-retry operation, i.e., it performs all the
retry steps using the same tPRE value. Doing so does not increase

11We assume that PR2 is already implemented.
12A regular SSD already keeps track of the P/E-cycle count and retention age of

each block (i.e., the information necessary to determine the best tPRE value) in order
to ensure SSD lifetime and reliability (e.g., for wear leveling [21], periodic refresh of
stored data [14, 15, 28], or optimal VREF prediction [12, 64–66]).

9

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

PEC	 tRET [days] tPRE [μs]

<	250
<	60 14

<	360 16

<	1.5K
<	60 16

<	360 18

⋯

⋯

Read–timing	Param.	Table

Opt.	tR
ECC	fail

⋯

tRETRY

RESET❷SET FEATURE

❹SET FEATURE

ECC	success
tDMA
tECC
tRST

Figure	13

This	is	a	guide	for	the	width	of		a	figure.

PAGE READ(A)

⋯

⋯ ⋯

⋯ ⋯

Opt.
tPRE

tR

❶

Return	A

CACHE READ(A)

❸

Figure 13: Read-retry latency reduction in AR2.

the number of performed retry steps as long as the best tPRE value
for a given (𝑃𝐸𝐶, 𝑡RET) is correctly found via offline profiling. As we
observe in Section 5.1, the target page’s RBER drastically decreases
in the final retry step due to the use of near-optimal VREF values,
while ECC decoding would fail anyway in all previous steps even
if the default tPRE value were used. In other words, with accurate
profiling, the tPRE reduction does not affect the failure of the
previous steps, while guaranteeing the success of the final retry
step.

With AR2, tRETRY can be expressed as follows:
tRETRY = tSET + 𝜌 × 𝑁RR × tR + tDMA + tECC (5)

where tSET is the latency of the SET FEATURE command for
adjusting tPRE, and 𝜌 is reduction ratio in tR (0 < 𝜌 ≤ 1). As
tR is the dominant factor in tRETRY, AR2 can provide consider-
able performance improvement. For example, a 25% tR reduction
(=22.5 𝜇s) under a 1-year retention age at 2K P/E cycles is easily
possible (Section 5.2.3). Note that tSET is almost negligible (e.g., <
1 𝜇s [72]) compared to the total amount of tR reduction.
Overhead. AR2 requires only small changes to the SSD controller
to adjust tPRE based on the RPT. The storage overhead of the RPT
to store the best tPRE values for tens of (𝑃𝐸𝐶 , 𝑡RET) combinations
is also very small. For example, with 36 (𝑃𝐸𝐶, 𝑡RET) combinations,
we estimate the table size to be only 144 bytes per chip. Like other
metadata related to each NAND flash chip (e.g., the P/E-cycle count
of each block in the chip), the RPT can be stored in a specific page
of each NAND flash chip and fetched into internal SRAM or DRAM
at boot time so that the SSD controller can quickly access the RPT
once a read-retry occurs.

AR2 might potentially increase the number of retry steps for
outlier pages that exhibit high RBER in the final retry step even
with the default tPRE value. In the worst case, i.e., when a read-
retry fails13 with reduced tPRE, AR2 needs to perform a read-retry
operation on the same page using the default tPRE value since
the previous read-retry operation might not have failed with the
default tPRE value. However, the extremely-low probability of
such a case (we never detect such a case in our characterization of
more than 107 pages) makes the potential performance overhead of
AR2 negligible. Note that we also incorporate a safety margin for
outlier pages into the reduced tPRE values, as shown in Figure 11.

7 SYSTEM-LEVEL EVALUATION
We evaluate the impact of PR2 and AR2 on system performance
using a state-of-the-art SSD simulator [1, 85] and twelve storage
I/O traces from two representative benchmark suites.

13As explained in Section 2.4, a read-retry operation fails if the page’s RBER is
higher than the ECC capability even after trying all available sets of VREF values
prescribed by manufacturers.

7.1 Methodology
We evaluate the effectiveness of PR2 and AR2 using MQSim [1, 85],
an open-source multi-queue SSD simulator. We faithfully extend
MQSim based on our real-device characterization results to simulate
more realistic read-retry characteristics of modern SSDs.Wemodify
the NAND flash model of MQSim such that each simulated block
operates exactly the same as one of the real blocks that we test in
Section 5. We randomly select real tested blocks and map each of
them to a simulated block. We modify the data structure of each
simulated block to contain a lookup table for the number of read-
retry steps at a certain P/E-cycle count and retention age, which we
profile from the corresponding real block. As MQSim maintains the
P/E-cycle count and programming time of each page, a simulated
block can accurately emulate the same read-retry behavior as the
corresponding real block for every read. We simulate a 512-GiB
SSD that contains 4 channels, 4 dies per channel, and 2 planes per
die. A plane consists of 1,888 blocks, each of which has 576 16-KiB
pages. We assume an ECC engine that corrects up to 72 bit errors
per 1-KiB codeword within tECC =20 𝜇s. Table 1 summarizes the
timing parameters of our simulated NAND flash chip, which we
obtain from the real NAND flash chips used in our characterization.
The I/O rate is set to 1Gb/s, i.e., tDMA = 16 𝜇s for a 16-KiB page.

Table 1: NAND flash timing parameters.

Parameter Time Parameter Time

tR (avg.)14 90 𝜇s tPROG 700 𝜇s
tPRE 24 𝜇s tBERS 5 ms
tEVAL 5 𝜇s tSET 1 𝜇s
tDISCH 10 𝜇s tRST 5 𝜇s for read

We evaluate twelve workloads from two benchmark suites, Mi-
crosoft Research Cambridge (MSRC) Traces [76] and Yahoo! Cloud
Service Benchmark (YCSB) [23], which are widely used for perfor-
mance evaluation of storage systems [15, 16, 49, 58, 63, 65, 66, 84–
86]. MSRC Traces consist of 36 block I/O traces that are collected
from enterprise servers during one week. We select six traces from
the 36 total traces to have different I/O characteristics in terms of
read ratio and cold ratio, as summarized in Table 2. Read ratio is
the fraction of read requests in a workload. Cold ratio is the frac-
tion of read requests whose target page is never updated during
the entire execution of the workload. Such a page is programmed
only once and thus experiences a long retention age compared to
frequently-updated pages (i.e., write-hot pages).

Table 2: I/O characteristics of the evaluated workloads.

Workload Read Cold Workload Read Cold
ratio ratio ratio ratio

stg_0 0.15 0.38 YCSB-A 0.98 0.72
hm_0 0.36 0.22 YCSB-B 0.99 0.59
prn_1 0.75 0.72 YCSB-C 0.99 0.6
proj_1 0.89 0.96 YCSB-D 0.98 0.58
mds_1 0.92 0.98 YCSB-E 0.99 0.98
usr_1 0.96 0.73 YCSB-F 0.98 0.87

14As explained in Section 2.2, in multi-level cell NAND flash memory, tR varies
depending on 𝑁SENSE , the number of sensing times required for reading a page (Equa-
tion (1)). In TLC NAND flash memory, 𝑁SENSE = ⟨2, 3, 2⟩ for ⟨LSB (least-significant
bit), CSB (central-significant bit), MSB (most-significant bit)⟩ pages [6, 7].

10

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

7.2 SSD Response Time
We compare five SSD configurations with different read-retry miti-
gation schemes: 1) Baseline, 2) PR2, 3) AR2, 4) PnAR2, and 5) NoRR.
Baseline is a high-end SSD that 1) adopts out-of-order I/O schedul-
ing [36, 86] and program/erase suspension [50, 91] techniques to
provide high read performance, and 2) performs regular read-retry
operations (described in Figure 12(a)). PR2 and AR2 are SSDs that
implement each of our two techniques alone on top of Baseline,
respectively. PnAR2 (Pipelined and Adaptive Read-Retry) is an SSD
that integrates both PR2 and AR2 to minimize the read-retry la-
tency. NoRR is an ideal SSD where no read-retry occurs, showing
the upper bound of eliminating read-retry on SSD performance.
Figure 14 compares the performance (average response time) of all
five SSD configurations, normalized to Baseline, under different
operating conditions.

We make five key observations from Figure 14. First, our two
techniques, either alone or when combined, significantly improve
the I/O performance of a modern SSD. PR2 and AR2 reduce SSD
response time by up to 38.3% and 18.1% (17.7% and 11.9% on average
across all workloads) compared to Baseline, respectively. PnAR2
provides higher improvements by using both PR2 and AR2, en-
abling up to 51.8% (28.9% on average) SSD response time reduction
over Baseline. Second, PR2 and AR2 improve SSD performance in a
synergistic manner. The average SSD response time improvement
of PnAR2 (28.9% on average across all workloads) is higher than
simple aggregation of the individual gains of PR2 and AR2. Third,
the worse the operating conditions, the larger the performance
gain of the proposed techniques. For example, under a 6-month
retention age at 2K P/E cycles, PnAR2 reduces the average SSD
response time across all workloads by 35.2% over Baseline. Fourth,
our proposal is highly effective under read-dominant workloads,
but it also provides considerable performance improvement for

workloads with many writes. For stg_0, whose read ratio is only
0.15, PnAR2 improves SSD performance by 34% under a 6-month
retention age at 2K P/E cycles and by 18.7% on average under all
operating conditions. The results suggest that, although the page-
read latency (tR) is much shorter than the page-program latency
(tPROG) and block-erasure latency (tBERS), it is important to op-
timize read-retry as frequent read-retry operations with multiple
retry steps can cause read requests to bottleneck SSD performance.
Fifth, PR2 and AR2 are effective at mitigating the performance over-
head of read-retry, but there still exists large room for improvement.
PnAR2 reduces the response-time gap between Baseline and NoRR
by 41% on average across all workloads, but still exhibits a 2.37×
higher average response time compared to the ideal NoRR.

Based on our observations, we conclude that our proposal is ef-
fective at improving SSD performance by mitigating the significant
overheads of read-retry. We also find that there is still large room
for improvement to optimize PnAR2, which motivates us to com-
bine PR2 and AR2 with existing read-retry optimization techniques
that aim to reduce the number of read-retry operations.

7.3 Comparison to Prior Work
To evaluate the effectiveness of our proposal when combined with
existing read-retry optimization techniques, we compare two SSD
configurations that adopt a state-of-the-art read-retry mitigation
technique [84], called PSO (Process Similarity-aware Optimization).
PSO reduces the number of retry steps by reusing VREF values
that are recently used for a read-retry operation on other pages
exhibiting similar error characteristics with the target page to read.
We simulate two PSO-enabled SSDs using MQSim: 1) PSO, which
adopts only the PSO technique over Baseline, and 2) PSO+PnAR2,
which integrates PR2 and AR2 on top of PSO. Figure 15 compares
the average response time of the two SSDs under different condi-
tions. All values are normalized to Baseline.

Figure	14

This	is	a	guide	for	the	width	of		a	figure.

tRET
stg_0 hm_0 prn_1 proj_1 mds_1 usr_1

0
0.25

0.75

1

This	is	a	guide	for	the	width	of		a	figure.

0.5

0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2
3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

PR2 AR2 PnAR2 NoRR

Write	dominant Read	dominant

No
rm
al
iz
ed
	

Re
sp
on
se
	ti
m
e

[months]

PEC	[103]

Figure 14: Response-time (RT) reduction of our proposal under different 𝑃𝐸𝐶 (unit: ×103) and 𝑡RET (unit: months).

Figure	15

This	is	a	guide	for	the	width	of		a	figure.

stg_0 hm_0 prn_1 proj_1 mds_1 usr_1

0
0.25

0.75

1
PSO PSO+PnAR2

This	is	a	guide	for	the	width	of		a	figure.

0.5

0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2
3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

NoRR

tRET

Write	dominant Read	dominant

No
rm
al
iz
ed
	

Re
sp
on
se
	ti
m
e

[months]

PEC	[103]

Figure 15: Performance improvement of our proposal when combined with an existing read-retry mitigation scheme [84].

11

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

We make three major observations. First, although PSO signifi-
cantly reduces the average response time over Baseline, its perfor-
mance is still far from the ideal NoRR. In particular, the average
response time of PSO is up to 4.31× (1.92× on average) that of NoRR
in read-dominant workloads. Second, PR2 and AR2 further improve
SSD performance significantly when implemented on top of the
PSO technique. Compared to PSO, PSO+PnAR2 reduces the average
response time by up to 31.5% (17% on average) in read-dominant
workloads and by up to 9.4% (3.6% on average) in write-dominant
workloads. Third, PSO+PnAR2’s average response time is 1.6× that
of the ideal 𝑁RR in read-dominant workloads. This shows that there
is still some more room for optimizing read-retry in future work.

We conclude that our proposal effectively complements existing
techniques to minimize the read-retry overhead and thus signif-
icantly improves the performance of modern SSDs. We believe
that PR2 and AR2 are quite promising as their large performance
benefits come with almost negligible overheads.

8 DISCUSSION
We briefly discuss the potential impact of our proposals on future
research to optimize SSD read performance.
Latency Reduction for Regular Reads. A modern SSD’s high
ECC capability enables AR2 to use a page’s ECC-capability margin
for reducing the sensing latency. Although AR2 is used for only
reducing the latency of a read-retry, we expect that its key idea can
be used also for reducing the latency of a regular page read (i.e., a
page read requiring no read-retry). For example, if we can accurately
estimate a page’s RBER and near-optimal VREF values using an
accurate error model (which could be obtained via extensive real-
device characterization as done in [6, 7, 9–16, 64–66, 84]), it would
enable us to safely reduce read-timing parameters for regular reads.
Further Reduction of Read-Retry Latency. We expect that the
key idea of PR2, i.e., speculatively starting a new retry step (assum-
ing that the current retry step is likely to fail), can be extended
to further reduce the read-retry latency. For example, if a page to
read is likely to exhibit high RBER that would exceed the ECC ca-
pability, the SSD controller can speculatively start read-retry steps
without reading the page using default timing parameters (which
would likely fail). By using an accurate error model that can predict
whether or not a page read would fail (e.g., as in [6, 7, 9, 10, 12–
14, 64–66, 84]), such an approach could further reduce the effective
read-retry latency without penalty.

9 RELATEDWORK
To our knowledge, this paper is the first to 1) provide a detailed
and rigorous understanding of the read-retry behavior and the
effect of reducing read-timing parameters in modern NAND flash
memory by characterizing a large number of real 3D NAND flash
chips, and 2) propose two new techniques that effectively reduce
the read-retry latency by exploiting advanced features of modern
SSDs. We briefly discuss closely related prior work that aims to
mitigate the read-retry overhead and improve system performance
by exploiting the reliability margin in memory devices, specifically
NAND flash memory and DRAM.
Read-Retry Mitigation. Prior works [14, 15, 28] propose to re-
fresh a page (i.e., reset the page’s retention age) before the page’s
RBER increases beyond the ECC capability to avoid a read failure

that, in turn, causes a read-retry. Refresh-based approaches might
be able to reduce the number of read-retry operations, but can neg-
atively affect the overall SSD performance by wasting bandwidth
and/or increasing wear due to refresh operations. As explained in
Section 2.3, a page’s RBER rapidly increases beyond the ECC capa-
bility in modern 3D NAND flash memory, which incurs a read-retry
operation even under a zero retention age as shown in Figure 5. To
avoid read-retry, therefore, refresh-based approaches should refresh
(i.e., read and rewrite) soon-to-be-read pages very frequently, which
could introduce significant performance overheads and wear, as
shown in [14, 15].

Several prior works [12, 13, 64–66, 77, 84] propose to keep track
of pre-optimized VREF values for each block to use the VREF values
for future read requests. By starting a read (and retry) operation
with pre-optimized VREF values close to the optimal read-reference
voltage VOPT, they significantly reduce the number of read-retry
steps. Unfortunately, read-retry is a fundamental problem that is
hard to completely eliminate in modern SSDs. While the existing
techniques reduce the number of read-retry steps, our techniques
effectively reduce the latency for performing the same number of
retry steps, which makes our techniques complementary to these
existing techniques, as shown in Section 7.3. Considering the low
overhead of our techniques, they can be easily combined with
existing techniques to minimize the read-retry overhead that is
expected to become larger in emerging NAND flash memory (e.g.,
3D QLC NAND flash memory).

A concurrent study [56] with ours proposes a new VOPT predic-
tion technique to reduce the number of retry steps. The key idea
is to store predefined bit patterns in a set of spare cells in each
page, called Sentinel cells, so as to accurately estimate the page’s
current error characteristics (and VOPT) based on errors incurred
in the predefined bit patterns. Doing so allows the SSD controller
to try near-optimal VREF values right after the first regular page
read, which significantly reduces the average number of read-retry
steps (from 6.6 to 1.2). Both of our proposed techniques, PR2 and
AR2, can complement the Sentinel-based approach [56] as well
as other read-retry mitigation techniques [12, 13, 64–66, 77, 84]
that aim to reduce the number of retry steps. First, once the SSD
firmware accurately identifies the optimal VREF values using the
Sentinel cells, it is possible to reduce the latency of the following
retry step(s) using AR2, i.e., applying reduced read-timing param-
eters. Second, PR2 reduces the latency of a read-retry operation
when the Sentinel-based VOPT prediction fails (as shown in [56],
the Sentinel-based approach cannot completely avoid multiple retry
steps), by speculatively issuing a new retry step.
Full Utilization of Reliability Margin in Memory Devices.
There is a large body of prior work to improve DRAM perfor-
mance and energy consumption by leveraging variation in access
latency [18–20, 29, 30, 45–47, 51–53, 62, 89, 94] and data reten-
tion times [25, 39–42, 59, 60, 81, 82, 88] across DRAM cells. These
works clearly show that manufacturers set timing parameters of a
device conservatively to ensure correct operation of outlier cells,
even though a significant majority of cells can reliably operate
with lower timing parameters. Our work shows that there also
exists a large reliability margin in modern NAND flash memory
and demonstrates that the large margin can be used for reducing
the read latency through careful real-device characterization.

12

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

A few prior works [61, 78, 84] propose to improve the write
performance of SSDs by fully exploiting the underutilized ECC
capability. For example, Liu et al. [61] propose to program a soon-to-
be-updated page with coarse-grained voltage control, which greatly
reduces the program latency. As the page will not experience a long
retention age, programming the page with fine-grained voltage
control unnecessarily increases the program latency while leaving a
large ECC-capability margin for the page. Similarly, Shim et al. [84]
propose to reduce the number of verify steps in a page-program
operation, if the target WL is more robust to error than other WLs.
By leveraging processing variation in modern NAND flash memory,
they safely reduce the program latency for a large number of WLs.
None of these techniques, however, leverage the ECC-capability
margin to improve SSD read latency, which is often more critical
for many key applications in modern computing systems.

10 CONCLUSION
This paper proposes two new read-retry mechanisms, PR2 and AR2,
which significantly improve SSD performance by reducing the la-
tency of read-retry operations. We identify new opportunities to
optimize the read-retry latency by exploiting advanced architec-
tural features widely adopted in modern SSDs. Through extensive
real-device characterization of modern 3D TLC NAND flash chips,
we demonstrate that it is possible to use the large ECC-capability
margin present in the final retry step for reducing the latency of
each retry step. Our results show that our techniques effectively
improve SSD performance and complement existing techniques.
We hope that our new findings on the read-retry behavior and the
reliability impact of reducing read-timing parameters in modern
NAND flash-based SSDs inspire new mechanisms to further im-
prove SSD latency and performance, which are critical for modern
data-intensive workloads.

ACKNOWLEDGMENTS
We would like to thank our shepherd Dan Tsafrir and anonymous
reviewers for their feedback and comments. We thank the SAFARI
Research Group members for feedback and the stimulating intellec-
tual environment they provide. We thank our industrial partners,
especially Google, Huawei, Intel, Microsoft, and VMware, for their
generous donations. This work was in part supported by Samsung
Research Funding & Incubation Center of Samsung Electronics, Re-
public of Korea under Project Number SRFC-IT2002-06, and by the
National Research Foundation of Korea (NRF) grant funded by the
Ministry of Science and ICT (MSIT) (NRF-2020R1A6A3A03040573).
The ICT at Seoul National University provided research facilities
for this study. (Co-corresponding Authors: Jisung Park, Jihong Kim,
and Onur Mutlu)

REFERENCES
[1] MQSim GitHub Repository. https://github.com/CMU-SAFARI/MQSim. 2018.
[2] Svante Arrhenius. Über die Dissociationswärme und den Einfluss der Temperatur

auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 1889.
[3] Pranav Arya. A Survey of 3D NAND Flash Memory. EECS International Graduate

Program, National Chiao Tung University. 2012.
[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload Analysis of a Large-scale Key-value Store. In SIGMETRICS. 2012.
[5] Raj Chandra Bose and Dwijendra K. Ray-Chaudhuri. On a Class of Error Cor-

recting Binary Group Codes. Inf. Ctrl. 1960.

[6] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. Error
Characterization, Mitigation, and Recovery in Flash-memory-based Solid-state
Drives. Proc. IEEE. 2017.

[7] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. Relia-
bility Issues in Flash-memory-based Solid-state Drives: Experimental Analysis,
Mitigation, Recovery. In Inside Solid State Drives (2nd ed.). Springer. 2018.

[8] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. Haratsch.
Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Anal-
ysis, Exploits, and Mitigation Techniques. In HPCA. 2017.

[9] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis. In DATE.
2012.

[10] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Threshold Voltage Distribu-
tion in MLC NAND Flash Memory: Characterization, Analysis, and Modeling. In
DATE. 2013.

[11] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu. Read Disturb Errors in MLC
NAND Flash Memory: Characterization, Mitigation, and Recovery. In DSN. 2015.

[12] Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu. Data Retention
in MLC NAND Flash Memory: Characterization, Optimization, and Recovery. In
HPCA. 2015.

[13] Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai. Program Interference in
MLC NAND Flash Memory: Characterization, Modeling, and Mitigation. In ICCD.
2013.

[14] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Crista, Osman S.
Unsal, et al. Error Analysis and Retention-aware Management for NAND Flash
Memory. Intel Tech. J. 2013.

[15] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman S.
Unsal, et al. Flash Correct-and-refresh: Retention-aware Error Management for
Increased Flash Memory Lifetime. In ICCD. 2012.

[16] Yu Cai, Gulay Yalcin, Onur Mutlu, F. Erich Haratsch, Osman Unsal, Adrian Cristal,
et al. Neighbor-cell Assisted Error Correction for MLC NAND Flash Memories.
In SIGMETRICS. 2014.

[17] Jaewon Cha and Sungho Kang. Data Randomization Scheme for Endurance
Enhancement and Interference Mitigation of Multilevel Flash Memory Devices.
ETRI Journal. 2013.

[18] Karthik Chandrasekar, Sven Goossens, Christian Weis, Martijn Koedam, Benny
Akesson, Norbert Wehn, et al. Exploiting Expendable Process-margins in DRAMs
for Run-time Performance Optimization. In DATE. 2014.

[19] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, et al. Understanding Latency Variation in Modern DRAM Chips:
Experimental characterization, Analysis, and Optimization. In SIGMETRICS. 2016.

[20] Kevin K. Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Adhijith Kashyap, et al. Understanding Reduced-voltage Opera-
tion in Modern DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms. In SIGMETRICS. 2017.

[21] Li-Pin Chang. On Efficient Wear Leveling for Large-scale Flash-memory Storage
Systems. In SAC. 2007.

[22] Eun-Seok Choi and Sung-Kye Park. Device Considerations for High Density and
Highly Reliable 3D NAND Flash Cell in Near Future. In IEDM. 2012.

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. In SoCC. 2010.

[24] Alvin Cox. JEDEC SSD Endurance Workloads. In FMS. 2011.
[25] Anup Das, Hasan Hassan, and Onur Mutlu. VRL-DRAM: Improving DRAM

Performance via Variable Refresh Latency. In DAC. 2018.
[26] Aya Fukami, Saugata Ghose, Yixin Luo, Yu Cai, and Onur Mutlu. Improving

the Reliability of Chip-off Forensic Analysis of NAND Flash Memory Devices.
Digital Investigation. 2017.

[27] Robert Gallager. Low-density Parity-check Codes. IEEE TIT. 1962.
[28] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. An Integrated Approach for Man-

aging Read Disturbs in High-density NAND Flash Memory. IEEE TCAD. 2015.
[29] Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Seshadri Vivek,

Donghyuk Lee, Oguz Ergin, et al. ChargeCache: Reducing DRAM Latency by
Exploiting Row Access Locality. In HPCA. 2016.

[30] Hasan Hassan, Nandita Vijaykumar, Samira Khan, Saugata Ghose, Kevin K.
Chang, Gennady Pekhimenko, et al. SoftMC: A Flexible and Practical Open-
source Infrastructure for Enabling Experimental DRAM Studies. In HPCA. 2017.

[31] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang. Perfor-
mance Impact and Interplay of SSD Parallelism through Advanced Commands,
Allocation Strategy and Data Granularity. In ICS. 2011.

[32] Hwang Huh, Wanik Cho, Jinhaeng Lee, Yujong Noh, Yongsoon Park, Sunghwa
Ok, et al. A 1Tb 4b/Cell 96-Stacked-WL 3D NAND Flash Memory with 30MB/s
Program Throughput Using Peripheral Circuit Under Memory Cell Array Tech-
nique. In ISSCC. 2020.

[33] Jaehoon Jang, Han-Soo Kim,Wonseok Cho, Hoosung Cho, Jinho Kim, Sun Il Shim,
et al. Vertical Cell Array Using TCAT (Terabit Cell Array Transistor) Technology
for Ultra High Density NAND Flash Memory. In VLSI. 2009.

[34] JEDEC. JESD218B.01: Solid-State Drive (SSD) Requirements and Endurance Test
Method. https://www.jedec.org/standards-documents/docs/jesd218b01. 2016.

13

https://github.com/CMU-SAFARI/MQSim
https://www.jedec.org/standards-documents/docs/jesd218b01

ASPLOS ’21, April 19–23, 2021, Virtual, USA Jisung Park, Myoungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu

[35] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim. Lifetime
Improvement of NAND Flash-based Storage Systems Using Dynamic Program
and Erase Scaling. In FAST. 2014.

[36] Myoungsoo Jung and Mahmut T. Kandemir. Sprinkler: Maximizing Resource
Utilization in Many-chip Solid State Disks. In HPCA. 2014.

[37] Dongku Kang, Woopyo Jeong, Chulbum Kim, Doo-Hyun Kim, Yong Sung Cho,
Kyung-Tae Kang, et al. 256Gb 3b/Cell V-NAND Flash Memory with 48 Stacked
WL Layers. In ISSCC. 2016.

[38] Ryota Katsumata, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kido, Hiroyasu
Tanaka, Yosuke Komori, et al. Pipe-shaped BiCS Flash Memory with 16 Stacked
Layers and Multi-level-cell Operation for Ultra High Density Storage Devices. In
VLSI. 2009.

[39] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wiler-
son, and Onur Mutlu. The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study. In SIGMETRICS. 2014.

[40] Samira Khan, Donghyuk Lee, and Onur Mutlu. PARBOR: An Efficient System-
level Technique to Detect Data-dependent Failures in DRAM. In DSN. 2016.

[41] Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and Onur
Mutlu. A Case for Memory Content-based Detection and Mitigation of Data-
dependent Failures in DRAM. IEEE CAL. 2016.

[42] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu. Detecting and Mitigating Data-dependent DRAM Failures by
Exploiting Current Memory Content. In MICRO. 2017.

[43] Chulbum Kim, Jinho Ryu, Taesung Lee, Hyunggon Kim, Jaewoo Lim, Jaeyong
Jeong, et al. A 21 nm High Performance 64 Gb MLC NAND Flash Memory with
400 MB/s Asynchronous Toggle DDR Interface. IEEE JSSC. 2012.

[44] Doo-Hyun Kim, Hyunggon Kim, Sungwon Yun, Youngsun Song, Jisu Kim, Sung-
Min Joe, et al. A 1Tb 4b/cell NAND Flash Memory with tPROG=2ms, tR=110𝜇s
and 1.2Gb/s High-Speed IO Rate. In ISSCC. 2020.

[45] Jeremie Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. Solar-DRAM: Re-
ducing DRAM Access Latency by Exploiting the Variation in Local Bitlines. In
ICCD. 2018.

[46] Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. The DRAM
Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting
the Latency-reliability Tradeoff in Modern DRAM Devices. In HPCA. 2018.

[47] Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu. D-
RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers
with Low Latency and High Throughput. In HPCA. 2019.

[48] Myungsuk Kim, Jaehoon Lee, Sungjin Lee, Jisung Park, Youngsun Song, and
Jihong Kim. Improving Performance and Lifetime of Large-page NAND Storages
Using Erase-free Subpage Programming. In DAC. 2017.

[49] Myungsuk Kim, Jisung Park, Genhee Cho, Yoona Kim, Lois Orosa, Onur Mutlu,
et al. Evanesco: Architectural Support for Efficient Data Sanitization in Modern
Flash-based Storage Systems. In ASPLOS. 2020.

[50] Shine Kim, Jonghyun Bae, Hakbeom Jang, Wenjing Jin, Jeonghun Gong, Se-
ungyeon Lee, et al. Practical Erase Suspension for Modern Low-latency SSDs. In
USENIX ATC. 2019.

[51] Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha Shahroodi,
Konstantions Kanellopoulos, et al. EDEN: Enabling Energy-efficient, High-
performance Deep Neural Network Inference Using Approximate DRAM. In
MICRO. 2019.

[52] Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata
Ausavarungnirun, Gennady Pekhimenko, et al. Design-induced Latency Variation
in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction
Mechanisms. In SIGMETRICS. 2017.

[53] Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri,
Kevin K. Chang, et al. Adaptive-latency DRAM: Optimizing DRAM Timing for
the Common-case. In HPCA. 2015.

[54] Sang-Hoon Lee. Flash Memory System and Read Method in Flash Memory
System. US Patent 8,850,292. 2014.

[55] Nancy Leong, Sachit Chandra, and Hounien Chen. Random Cache Read Using a
Double Memory. US Patent 7,423,915. 2008.

[56] Qiao Li, Min Ye, Yufei Cui, Liang Shi, Xiaoqiang Li, Tei-Wei Kuo, et al. Shaving
Retries with Sentinels for Fast Read over High-Density 3D Flash. InMICRO. 2020.

[57] Jason T. Lin, Steven S. Cheng, and Shai Traister. System, Method and Memory
Device Providing Data Scrambling Compatible with On-chip Copy Operation.
US Patent 8,301,912. 2012.

[58] Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut T. Kandemir, and
Chita R. Das. SOML Read: Rethinking the Read Operation Granularity of 3D
NAND SSDs. In ASPLOS. 2019.

[59] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. An
Experimental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms. In ISCA. 2013.

[60] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR: Retention-aware
Intelligent DRAM Refresh. In ISCA. 2012.

[61] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing NAND Flash-based SSDs
via Retention Relaxation. In FAST. 2012.

[62] Haocong Luo, Taha Shahroodi, Hasan Hassan, Minesh Patel, A. Giray Yaglikci,
Lois Orosa, et al. CLR-DRAM: A Low-cost DRAMArchitecture Enabling Dynamic

Capacity-Latency Trade-off. In ISCA. 2020.
[63] Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu. WARM:

Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention
Management. In MSST. 2015.

[64] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Enabling
Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND
Flash Memory. IEEE JSAC. 2016.

[65] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Heat-
Watch: Improving 3D NAND Flash Memory Device Reliability by Exploiting
Self-recovery and Temperature Awareness. In HPCA. 2018.

[66] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Improving
3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process
Variation. In SIGMETRICS. 2018.

[67] Macronix. Technical Note: Improving NAND Throughput with Two-Plane
and Cache Operations. https://www.macronix.com/Lists/ApplicationNote/
Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%
20Two-Plane%20and%20Cache%20Operations.pdf. 2013.

[68] Rino Micheloni, Luca Crippa, and Alessia Marelli. Inside NAND Flash Memories.
Springer. 2010.

[69] Micron. Technical Note: NAND Flash Performance Increase Using the
Micron PAGE READ CACHE MODE Command. https://www.micron.com/-
/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/
tn2901.pdf. 2004.

[70] Micron. NAND Flash Memory Data Sheet: MT29F2G08AACWP, MT29F4G-
08BACWP, MT29F8G08FACWP. 2005.

[71] Micron. NAND Flash Memory Data Sheet: MT29F16G08ABABA, MT29F32G-
08AFABA, MT29F64G08A[J/K/M]ABA, MT29F128G08AUABA, MT29F16G-
08ABCBB, MT29F32G08AECBB, MT29F64G08A[K/M]CBB, MT29F128G-
08AUCBB. 2009.

[72] Micron. NAND Flash Memory Data Sheet: MT29F32G08CBACA, MT29F64G-
08CEACA, MT29F64G08CFACA, MT29F128G08CXACA, MT29F64G08CECCB.
2010.

[73] Micron. Product Flyer: Micron 3D NAND Flash Memory. https:
//www.micron.com/-/media/client/global/documents/products/product-
flyer/3d_nand_flyer.pdf?la=en. 2016.

[74] Onur Mutlu. Memory Scaling: A Systems Architecture Perspective. In IMW.
2013.

[75] Onur Mutlu and Lavanya Subramanian. Research Problems and Opportunities
in Memory Systems. SUPERFRI. 2015.

[76] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write Off-
loading: Practical Power Management for Enterprise Storage. In FAST. 2008.

[77] Shiqiang Nie, Youtao Zhang, Weiguo Wu, and Jun Yang. Layer RBER Variation
Aware Read Performance Optimization for 3D Flash Memories. In DAC. 2020.

[78] Yangyang Pan, Guiqiang Dong, Qi Wu, and Tong Zhang. Quasi-nonvolatile SSD:
Trading Flash Memory Nonvolatility to Improve Storage System performance
for Enterprise Applications. In HPCA. 2012.

[79] Jisung Park, Jaeyong Jeong, Sungjin Lee, Youngsun Song, and Jihong Kim. Im-
proving Performance and Lifetime of NAND Storage Systems Using Relaxed
Program Sequence. In DAC. 2016.

[80] Jisung Park, Myungsuk Kim, Sungjin Lee, and Jihong Kim. Improving I/O Perfor-
mance of Large-page Flash Storage Systems Using Subpage-parallel Reads. In
NVMSA. 2018.

[81] Minesh Patel, Jeremie S. Kim, and Onur Mutlu. The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive
Conditions. In ISCA. 2017.

[82] Moinuddin K. Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J. Nair, and Onur
Mutlu. AVATAR: A Variable-retention-time (VRT) Aware Refresh for DRAM
Systems. In DSN. 2015.

[83] Samsung. 32Gb A-die NAND Flash Datasheet. 2009.
[84] Youngseop Shim, Myungsuk Kim, Myoungjun Chun, Jisung Park, Yoona Kim,

and Jihong Kim. Exploiting Process Similarity of 3D Flash Memory for High
Performance SSDs. In MICRO. 2019.

[85] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and
Onur Mutlu. MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-queue SSD Devices. In FAST. 2018.

[86] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, Yixin
Luo, Yaohua Wang, et al. FLIN: Enabling Fairness and Enhancing Performance
in Modern NVMe Solid State Drives. In ISCA. 2018.

[87] Toshiba. NAND Memory Toggle DDR1.0 Technial Data Sheet. 2012.
[88] Ravi K. Venkatesan, Stephen Herr, and Eric Rotenberg. Retention-aware Place-

ment in DRAM (RAPID): Software Methods for Quasi-Non-Volatile DRAM. In
HPCA. 2006.

[89] YaohuaWang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri Ghiasi,
Minesh Patel, et al. Reducing DRAM Latency via Charge-level-aware Look-ahead
Partial Restoration. In MICRO. 2018.

[90] ONFI Workgroup. Open NAND Flash Interface Specification Revision 4.2. https:
//media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf. 2020.

14

https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.macronix.com/Lists/ApplicationNote/Attachments/1907/AN0268V1_Improving%20NAND%20Throughput%20with%20Two-Plane%20and%20Cache%20Operations.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/Documents/Products/Technical%20Note/NAND%20Flash/tn2901.pdf
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://www.micron.com/-/media/client/global/documents/products/product-flyer/3d_nand_flyer.pdf?la=en
https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf
https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf

Reducing Solid-State Drive Read Latency by Optimizing Read-Retry ASPLOS ’21, April 19–23, 2021, Virtual, USA

[91] Guanying Wu and Xubin He. Reducing SSD Read Latency via NAND Flash
Program and Erase Suspension. In FAST. 2012.

[92] Qin Xiong, Fei Wu, Zhonghai Lu, Yue Zhu, You Zhou, Yibing Chu, et al. Charac-
terizing 3D Floating Gate NAND Flash: Observations, Analyses, and Implications.
ACM TOS. 2018.

[93] Jeff Yang. High-efficiency SSD for Reliable Data Storage Systems. In FMS. 2011.

[94] Xianwei Zhang, Youtao Zhang, Bruce R. Childers, and Jun Yang. Restore Trunca-
tion for Performance Improvement in Future DRAM Systems. In HPCA. 2016.

[95] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. FlashGraph: Processing Billion-node Graphs on an
Array of Commodity SSDs. In FAST. 2015.

15

	Abstract
	1 Introduction
	2 Background
	2.1 NAND Flash Organization
	2.2 NAND Flash Operation
	2.3 Reliability Problems in NAND Flash
	2.4 Reliability Management in NAND Flash

	3 Motivation
	3.1 Read-Retry in Modern NAND Flash
	3.2 Optimization Opportunities for Read-Retry

	4 Characterization Methodology
	5 Characterization Results
	5.1 ECC-Capability Margin in Final Retry Step
	5.2 Reliability Impact of Reducing Read-Timing Parameters

	6 Read-retry Optimizations
	6.1 PR2: Pipelined Read-Retry
	6.2 AR2: Adaptive Read-Retry

	7 System-level Evaluation
	7.1 Methodology
	7.2 SSD Response Time
	7.3 Comparison to Prior Work

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

