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ABSTRACT
Recent advances in flash technologies, such as scaling and multi-
leveling schemes, have been successful to make flash denser and
secure more storage spaces per die. Unfortunately, these technology
advances significantly degrade flash’s reliability due to a smaller
cell geometry and a finer-grained cell state control. In this paper, we
propose a state-aware reliability optimization technique (SARO),
new flash optimization that improves the flash reliability under
diverse scaling and multi-leveling schemes. To this end, we first
reveal that reliability-related flash errors are highly skewed among
flash cell states, which was not captured by prior studies. The
proposed SARO exploits then the different per-state error behavior
in flash cell states by selecting the most error-prone flash states
(for each error type) and by forming narrow threshold voltage
distributions (for the selected states only). Furthermore, SARO is
applied only when the program time gets shorter because of flash
cell aging, thereby keeping the program latency unchanged. Our
experimental results with real MLC and TLC flash devices show
that SARO can reduce a significant number of flash bit errors, which
can in turn reduce the read latency by 40%, on average.
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1 INTRODUCTION
Many recent advances and innovations in flash technologies (such
as 3D flash, 10-nm node process, and TLC cells) enabled dramatic
increases in the flash memory capacity. However, the fundamental
relationship between the capacity and reliability of flash memory
remains unchanged: the higher the flash chip capacity, the lower
the flash reliability 1. As the feature size of technologies shrinks,
neighboring flash cells are getting closer and located in a smaller
1Over 2D flash, 3D flash is more reliable with a higher capacity. However, within 3D
flash, this relationship still holds.
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Figure 1: Trends in the flash capacity and flash reliability
over advances in flash technologies.

space geometry. Unfortunately, a narrow spacing between adjacent
cells tend to be more vulnerable to noise effects such as cell-to-cell
interference, thus lowering the flash reliability [1]. In addition, the
m-bit multi-leveling technique (e.g., 3-bit triple-level cell (TLC))
significantly lowers the flash reliability because it increases the
storage capacity by distinguishing the same threshold voltage (Vth )
distribution of a cell transistor with 2m different states. Since a
higherm allows a smaller noise margin (between the adjacent cells),
the m-bit multi-leveling technique degrades the flash reliability,
compared to the single-level cell (SLC) flash device.

Figure 1 shows how the flash reliability has deteriorated by
process scaling andm-bit multi-leveling techniques, which have
been the driving force behind the recent growth in the storage
capacity in flash. For example, while flash’s storage capacity was
increased from 8G bits to 128G bits, the flash endurance has been
worsened by 10 times. To handle the poor reliability introduced
by such advanced techniques, a flash controller should employ
40-bit error correction codes (ECC) rather than 4-bit ECC at the
system-level.

To secure a better reliability in flash, a straightforward approach
is to keep Vth distributions of adjacent program states as distant
as possible so that the interference between neighboring cells can
be minimized. One simple technique is to reduce the Vth width
of each program state. Although narrowing Vth distributions for
program states makes program states error-resistant, it slows down
the program speed because a program step voltage (Vispp ) should
be reduced for forming a narrow Vth distribution. Since Vispp is
inversely proportional to the program latency, it is inevitable to
sacrifice the program latency if the reliability is improved in a way
that reducesVispp . Furthermore, many emerging applications (such
as real-time big-data analytics, autonomous cars and virtual-reality
applications) require both high capacity and high performance from
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Figure 2: Vth distributions of 2m-state flash memory.
flash-based storage systems, thus making it even less desirable to
improve the flash reliability by slowing down the program latency.

In this paper, we propose a new NAND flash reliability opti-
mization technique that addresses the reliability issue of high den-
sity flash memories without sacrificing their program latency. Our
proposed technique, called as state-aware reliability optimization
(SARO), is motivated by our key finding that reliability-related flash
errors are highly skewed among program states. That is, not all
flash reliability errors occur equally likely among different pro-
gram states. To be precise on the per-state error characteristics,
we performed comprehensive evaluations using 2x-nm TLC flash
chips and validated that a few program states are responsible for
most reliability errors. SARO narrows Vth distributions of these
error-prone states only, thus significantly reducing the overheads
imposed by applying a fine-grained Vispp . Our SARO also exploits
a well-known flash phenomenon that the program latency is de-
creased as flash cells get older because of traps in the damaged
tunnel oxide [2]. Specifically, we employ a fine-grained Vispp only
when the program latency gets shorter, which can in turn make
SARO achieve high flash reliability while keeping the program
latency unchanged.

For the validation of SARO, we built per-state error models
using 2x-nm TLC flash chips. Based on the per-state error models,
we devise a simple but effective method of selectively modifying
Vispp values under given flash cell status (such as P/E cycles). Our
experimental results show that SARO can improve the reliability
of MLC and TLC flash devices by 100% and 50%, respectively. As
a direct result of the improved reliability, SARO shortens the read
latency by 40%, on average, by reducing the number of read retry
operations.

The rest of this paper is organized as follows. Before SARO is
presented, we explain the key trade-off relationship between the
reliability and program latency in flash devices using real MLC and
TLC flash chips. The key schemes of SARO are presented in Section
3. Section 4 describes the SARO implementation details. Experi-
mental results follow in Section 5, and related work is summarized
in Section 6. Section 7 concludes with a summary and future work.

2 BACKGROUND
2.1 Reliability vs. Vth Design Parameters
For writes, flash changes target cell’s Vth states based on the con-
tent information (per bit). In the case of reads, flash reconstructs
the content by sensing the Vth state of target cells. Figure 2 illus-
trates Vth distributions for 2m-state flash devices, which storesm
bits within a cell by using 2m distinct Vth states (i.e.,m is 2 and
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Figure 3: Change patterns inVth distributions depending on
different error types.
3 for MLC and TLC, respectively). Since the primary Vth design
parameters shown in Figure 2 (i.e.,WPi ’s, MPi ’s, Mdist , V Erase

V er if y ,
and V Proдram

V er if y ) directly affect both the flash reliability and flash
performance, how to set these parameters is a critical decision for
NAND flash manufacturers. Once the Vth design parameters are
fixed during the flash design time, the flash reliability largely de-
pends on howVth distributions are disturbed by various causes. Bit
errors in flash memory occur when theVth distribution of one state
is shifted to neighboring state’sVth regions so that two overlapping
Vth distributions cannot be distinguished as two different states.

In general, we can categorize bit errors in flash into four groups
as shown in Figure 3. When a page is written, a small number of
bit errors are inevitable as shown in Figure 3(a). These initial errors
are caused by process variations and inherent noise effects (such
as cell-to-cell interference, back pattern dependency, and random
telegraph noise) [3]. More serious bit errors, which mandate to
employ a strong error-correction scheme (such as LDPC codes) in
a flash controller, are related to defects in the tunnel oxide layer of
flash cells [4]. As a flash device experiences P/E cycles, the width
of Vth distributions tend to get wider because of traps in tunnel
oxide layer which are caused by applying a high program/erase
voltage frequently. The traps in the tunnel oxide layer generated
by P/E cycles also exacerbate the program disturbance. When flash
cells are programmed, neighboring cells belonging to the E-state are
softly programmed, so that theirVth move to the right. As shown in
Figure 3(b), these errors are called endurance errors. The repeated
read operations also shift Vth of E-state cells to the right. When
flash cells are read, V Pass

Read (6∼7V) is applied to all the wordlines
(WLs) in the same block except for the target wordline 2. When
pages in the same block are frequently read, E-state cells in the
block are softly programmed, thus shifting their Vths to the right.
These errors, as shown in Figure 3(c), are called read-disturb errors.
If flash cells are left for a long time after a program operation, a
charge loss occurs by the stress-induced leakage current (SILC)
through traps in the tunnel oxide layer. These errors, as shown
in Figure 3(d), are called retention errors. The charge loss shifts
the Vth of program states to the left. Furthermore, higher program
states experience a greater amount of the charge loss, and hence
show a larger Vth shift compared to lower program states [5].

WhenVth distributions are sufficiently moved,Vth distributions
may overlap with read reference voltages (i.e., R1, R2 and R3 in
Figure 3), thus producing flash bit errors. For example, the shaded
regions in Figure 3 indicate such overlapped Vth distributions. If
2The memory cells are packed to form a matrix structure. As shown in Figure 9, cells
share a wordline (WL) horizontally and a bitline (BL) vertically.

2
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Figure 4: An overview of the ISPP scheme: (a) Key parame-
ters for tPROG and (b) Normalized tPROG over varying Vispp
scaling ratios

there is an insufficient Vth margin between the states, flash bit
errors sharply increase as Vth distributions are disturbed. When
the number of flash bit errors reaches over a pre-defined upper limit,
which is generally determined by the error correction capability
of an ECC engine in a flash controller, the flash page cannot be
correctly read, resulting in a read-failure status. Thus, to guarantee
the reliability of a flash device, sufficientMdist andMPi should be
secured considering the maximumVth changes after the maximum
number of P/E cycles, read cycles, and retention times.

2.2 Reliability vs. Program Latency
Typically, a flash device employs an incremental step pulse program-
ming (ISPP) scheme [6] to control the widthWPi of program states.
As shown in Figure 4(a), the ISPP scheme gradually increases the
program voltage byVispp at a time until all their cells in a page are
completely programmed. For each program loop that takes tLOOP ,
once cells are verified to have been sufficiently programmed by a
verify operation, those cells are excluded from the next program
loop. Since the widthWPi of the i-th program state is proportional
to Vispp , a simple solution to ensure sufficientMdist andMpi is to
narrowWPi by reducing Vispp during a program operation. Even
though the Vispp reduction can improve the flash reliability, it
increases the total number of nLoop of program loops because a
smallerVispp value needs to repeat the program loop more to reach
Vf inal for the maximum program state. Therefore, the program
latency is inversely proportional to Vispp . Figure 4(b) shows that
the program latency directly increases as Vispp is scaled down.

Figure 5 shows the results of reliability test over various Vispp
scaling ratios using real 2x-nm node MLC and TLC chips 3. (For
a detailed description on the evaluation settings, refer to Section

3When the Vispp scaling ratio is set to X%, Vispp is reduced by X% of the nominal
Vispp . We call this Vispp setting by modeX. BASE represents the baseline technique
where Vispp scaling ratio is 0%.
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Figure 5: Reliability of flash devices over various Vispp scal-
ing ratios: (a) 2x-nm MLC flash and (b) 2x-nm TLC flash

5.) As expected, both the endurance and retention capability were
significantly improved with a smaller Vispp value. In 2x-nm MLC
flash chips, the maximum number of P/E cycles is increased from
less than 7,000 to more than 10,000 when Vispp is reduced by 30%
(i.e., mode30). The data retention capability is also increased under
mode30 from about 2 years to 5 years 4.

As shown in Figure 4 and 5, there is a trade-off relationship
between the flash reliability and the flash program latency when
Vispp varies. Our main goal of the proposed SARO technique is to
investigate if we can achieve the same flash reliability improvement
from a smaller Vispp value without sacrificing the program latency.

3 SARO: BASIC IDEA
3.1 State-Aware Reliability Characterization
Since the program latency is proportional to nLoop and nLoop is,
in turn, inversely proportional to Vispp , reducing Vispp directly
increases the program latency and vice versa. In order to mitigate
the impact of a smaller Vispp on the program latency, we investi-
gated whether flash errors occur in a state-oblivious fashion or in a
state-aware fashion using 2x-nm TLC flash chips. Our intention was
that if flash bit errors occurred differently over different program
states, we can apply a smaller Vispp value only to those states with
higher probability of bit errors while not reducing Vispp for the
other states. By combining a smallVispp value with a larger one, we
can effectively lessen the impact of Vispp on the program latency
while, hopefully, achieving the same reliability improvement.

Figure 6 shows a breakdown of per-state flash bit errors on our
characterization study with 2x-nm TLC flash. Our results strongly
indicate that flash bit errors occur in a state-aware fashion. That
is, different error types occur in different program states. Most of
endurance and read-disturb errors occur between the E and P1 state
by the overlapped Vth distribution of the E-state cell and R1 read
reference voltage level. In Figure 6, about 43% of the total endurance
and read-disturb errors occur between E and P1 states. On the other
hand, most of retention errors occur in higher states. In Figure 6,
4The data retention capability is measured under the retention temperature of 30◦C
after the maximum P/E cycles (3,000 for MLC flash and 1,000 for TLC flash) and 1,000
read cycles for each block. This evaluation setting is a de facto standard for NAND
manufactures.

3
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retention errors between the P5 and P6 states account for about
31% of the total retention errors while retention errors between
the P6 and P7 states are responsible for 50% of the total retention
errors.

Based on our characterization results, SARO employs a state-
aware program scheme, optimizing each program state based on
its own reliability requirement. As shown in Figure 7, we apply the
reduced Vispp value to most error-prone states (e.g., P1, P5, and
P6 in Figure 7) only so that most bit errors can be avoided with a
small increase in the program latency. In addition to the reliability
optimization from a finer Vispp control, SARO improves the read
latency as well. For example, in Figure 7, asMP1,MP6, andMP7 get
wider, we adjust R1, R6, and R7 accordingly. This adjustment con-
tributes to reducing the number of read retry operations required.
Furthermore, since P7 has no right-side neighbor, we increase its
Vispp so that P7 program latency can be further reduced.

Our SARO technique can be easily generalized to 2m -state flash
as follows:
• Reduce Vispp and increase the verify and read reference
voltage (Rx) of the lowest program state (i.e., P1) to improve
the endurance and read disturb error.
• ReduceVispp of program states from (2m−2) state to 2m−(2m−2+1)
state to improve the retention error.
• Increase Vispp of (2m−1) (i.e., the highest) program state to
reduce the performance degradation.
• Decrease Rx of program states from (2m−1) state to (2m−2m−2)
state to make the read latency shorter.

3.2 Slack-Aware Adaptive NAND Programming
In order to minimize the performance degradation from reducing
Vispp , we devised a slack-aware scheme which accurately estimates
the tPROG acceleration ratio as flash cells get aged. For an accurate
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Figure 8: tPROG speed changes over varying P/E cycles.

estimate of tPROG, we performed a flash characterization study
while varying the number of P/E cycles. As shown in Figure 8,
the average latency for a page programming constantly decreases
as the number of P/E cycles increases. In MLC flash devices, after
applying 3,000 P/E cycles, the average program latency decreases by
13.4%, compared to an initial value (1,300 µs). The average program
latency of TLC flash devices also decreases by 9.6% after 1,000
P/E cycles. The effect of tPROG acceleration over P/E cycles can be
explained using traps in the tunnel oxide layer. As the number of P/E
cycles increase, traps also increase because a high program/erase
voltage damages the tunnel oxide layer. As the tunnel oxide layer
gets damaged, its insulation capability gets worse, thus allowing
electrons to move easily into flash floating gate. As a consequence,
programming the aged pages (e.g., experienced a lot of P/E cycles)
requires lesser number of program loops to complete the program
operation.

Based on the tPROG acceleration model, SARO applies a finer
Vispp value only when tPROG gets faster. In order not to introduce
any latency overhead, SARO tries to match an increase from a
finer Vispp value with a decrease in tPROG. Although this solution
is helpful to improve the flash reliability and easy to implement
without any hardware modification, if we apply the proposed slack-
awareVispp adjustment technique onlywithout exploiting per-state
error behavior of Section 3.1, its effect on the flash reliability is
rather limited. Since the decrease of the program latency (even) at
the end of the flash lifetime is about 10% of the default program
latency, Vispp can be reduced up to 10% only. For TLC flash, the
reliability improvement is marginal, i.e., about 10% only, as shown
in Figure 5(b).

4 SARO: IMPLEMENTATION DETAILS
4.1 State-Aware Selective NAND Programming
To support state-aware programming, a flash device should apply
different Vispp values to cells in the sameWL. Fortunately, since
NAND flash memory supports a bit-by-bit selective operation with
the self boosting program inhibit (SBPI) scheme [6], state-aware
selective programming can be easily implemented by modifying
the BL operating conditions without an additional hardware modi-
fication.

Figure 9 illustrates how the SBPI scheme supports bit-by-bit
selective program operations. When a pageWLk is programmed,
its i-th cell within the page is selectively programmed depending
on the value of BLi . If BLi is set to 1 (i.e., Vcc), the i-th cell is not
programmed (i.e., inhibited) because there is an insufficient voltage
difference by channel boosting effect (P1 in Figure 9(a)). If BLi is
set to 0 (i.e., 0V), the i-th cell is programmed because there is an
enough voltage difference to move the electron into the floating-
gate (P6 in Figure 9(b)). Based on a conventional SBPI, when the
i-th cell is programmed, the effective Vispp for the i-th cell during
a program operation can be reduced by forcing a specific voltage
into the channel connected to BL. For example, when a program

4
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voltage is increased from 18V to 18.4V byVispp (= 0.4V), the effective
Vispp can be reduced to 0.3V by applying 0.1V to the channel. In
our example, P1 state is inhibited (Figure 9(a)), P6 state is normally
programmed by 0.4V Vispp (Figure 9(b)), and P5 state in BLn is
programmed in a state-aware fashion (Figure 9(c)). At the start of P5
state programming (assuming that the start program voltage of P5
state is 18V), theWL gate is set to 18V by the target row decoder, and
the PBn forces Vcc to the BLn . Since the gate of the pass transistor
connected with BLn is set toVIM+VT (i.e.,VT is a threshold voltage
of the pass transistor), the voltage which can be transfered to the
BLn becomes VIM . Therefore, the voltage difference between the
channel and floating-gate of P5 state is reduced by VIM , which
indicates that the effectiveVispp is 0.4V−VIM . As the program loops
of the target program state proceed, the gate voltage of the pass
transistors is increased by VIM to maintain the reduced effective
Vispp .

4.2 SaFTL: SARO-aware FTL
In order to take advantage of the SARO technique in flash-based
storage systems, we modified an existing page-level FTL to support
SARO. (We call this modified FTL SaFTL, SARO-aware FTL.) The
main goal of SaFTL is to manage various operating parameters
based on the program latency measured from NAND flash mem-
ories. Figure 10 shows an overall organization of SaFTL. SaFTL
monitors the program latency from a flash device. The measured
program latency is compared to its initial (non-accelerated) tPROG.
Depending on the difference between the measured tPROG and the
initial tPROG, theMode Selectormodule decides a properMode for a
program request. For example, if the measured tRPOG is faster than
the initial tPROG by 3%, the next program request is programmed
using Mode 3 entry of the Parameter Table. The Parameter Table
contains all the necessary values for Vth design parameters for a
givenMode type.

In order for SaFTL to properly work, the initial program latency
andMode should be maintained for every programmed page. How-
ever, in order to reduce the memory overhead for implementing
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Figure 10: An Organizational overview of SaFTL

SARO, a mode selection is applied in a per-block basis. (That is, all
the pages in the same block is programmed using the sameMode .)
Since variations in tPROG within the same block is negligible (e.g.,
less than 3 µs in our evaluations), per-block mode selection is an
effective solution to minimize both the memory overhead and the
tPROG monitoring overhead.

In order to maintain up-to-date status per each block, SaFTL
uses the Per-Block Table which can be implemented with a small
memory overhead. For example, a flash device with 8,192 blocks
needs extra 22-KB memory for Per-Block Table. The initial program
latency is measured when the flash device is first programmed,
and stored in a pre-defined area. The current program latency is
determined by monitoring only one lastWL per block.

5 EXPERIMENTAL RESULTS
We conducted experiments using 20 real 2x-nm TLC and MLC flash
chips, respectively, to evaluate the effectiveness of the proposed
optimization technique. In order to minimize the potential distor-
tion of the evaluation results from process variations, we evenly
selected 30 test blocks from each chip at different physical block
locations, and tested all the pages in each selected test block. As a
result, a total of 115,200 pages (on TLC flash chips) and 76,800 pages
(on MLC flash chips) were used to obtain statistically significant ex-
perimental results. Using an in-house custom test board (equipped
with a NAND controller and a thermal controller), we conducted
comprehensive reliability and performance evaluations varying key
variables such as P/E cycles, read cycles, and retention times. For
example, in MLC flash chips, the endurance test was performed
with increasing the P/E cycles from 0 (an initial condition) to 10,000.
Similarly, the retention capability was evaluated by changing the
elapsed time (since the program operation) from 1 year to 5 years.

Figure 11 (a) and (b) show how the flash endurance and reten-
tion capability change under four different operation modes, BASE,
mode10, mode30, and SARO. SARO improves endurance and reten-
tion capability by 100% in MLC flash chips and 50% in TLC flash
chips over BASE, respectively. To better understand why SARO
outperforms BASE, we measured flash bit errors in each pages. The
number of flash bit errors in SARO is reduced by 56.1% in MLC
flash chips and 25.2% in TLC flash chips over BASE because SARO
increases the Vth margin between an error-prone adjacent states,
thus improving the error tolerance of a flash device. As expected,
mode30 shows the best reliability improvement, but it also degrades
the program latency by about 20% as shown in Figure 11(c). SARO,
on the other hand, barely affects the program latency. For TLC
flash chips, SARO increases the program latency by 1.8% which is
negligible overhead.

In order to understand the impact of the improved reliability on
the read latency, we evaluated how the number of read retry oper-
ations changes under SARO. The read retry operation is initiated
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Figure 11: Comparisons of reliability and performance met-
rics of four different operation modes.
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Figure 12: Changes in the number of read retry operations
under SARO over the baseline technique.

when uncorrectable errors are detected, and repeated until errors
can be corrected by the ECC scheme. Since the read latency of a
flash device is directly proportional to the number of repeated read
retry operations, the read latency is significantly improved when
the number of read retry operations is reduced. Figure 12 shows
the number of read retry operations under BASE and SARO in MLC
and TLC flash chips. SARO reduces the average number of read
retry operations by 40% on average over BASE.

6 RELATEDWORK
There have been several studies that attempt to improve the relia-
bility of flash devices. Pan et al. [7] proposed a technique which can
reduce Vispp with P/E cycles to optimize the reliability and perfor-
mance of NAND flash memory. However, this technique changes

Vispp of all program states without considering different error pat-
terns among different program states. Therefore, this technique
is rather limited to apply for high-density flash devices, such as
TLC flash devices. Park et al. [8] also proposed a technique which
can change program operating parameters according to P/E cycles.
However, their technique is different from SARO in that they did
not explore per-state error characteristics. In addition, their tech-
nique targets SLC flash devices only so that it cannot be applied for
high-density flash devices. The DPES technique proposed by Jeong
et al. [9] is similar to our SARO in that it dynamically changes erase
and program parameters of a flash device. However, unlike SARO,
it improves the flash endurance only by reducing a stress to flash
cells. SARO is different from this technique in that SARO improves
the flash reliability in a comprehensive fashion by considering all
the different error types including the endurance errors.

7 CONCLUSIONS
We have presented a new flash reliability optimization technique,
SARO, that solves the reliability problem of high-density NAND
flash memory without sacrificing the program latency. Our pro-
posed technique is based on the state-aware selective programming
scheme, which enables each program state to be programmed by a
differentVispp value. Since SARO improves the error tolerance of a
flash device by selectively reducing Vispp for the most error-prone
NAND states only, it is an effective solution to maximize the relia-
bility improvement while minimizing the performance degradation.
In order to keep the performance unchanged, SARO parameters are
fine-tunned exploiting the flash characteristics that the program
latency decreases with cell aging. Our evaluation results with real
flash chips show that SARO is effective in improving the flash relia-
bility thanks to the significant decrease in NAND bit errors. It also
improves the read latency by 40% on average due to the reduction
of read retry operations.

The current version of SARO can be extended in several direc-
tions. For example, since a finer Vispp value is more effective for
higher flash reliability, we plan to better exploit various system
hints (e.g., latency-insensitive program operations) to more aggres-
sively reduce Vispp without affecting the program latency.
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