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ABSTRACT
In designing a high-performance cloud computing platform, it is 
important to support diverse system resource requirements of 
various cloud computing services/applications in a scalable 
fashion. In this poster, we propose an intelligent middleware for 
our prototype cloud computing system which automatically 
changes configurations of modules for high performance under 
varying cloud service/application workload. Our initial evaluation 
results show that efficient resource management during run time is 
a key enabling technique for developing high-performance cloud 
computing systems. 

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]; C.5.5 [Servers] 

General TermsManagement, Performance
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1. INTRODUCTION 
In order for a cloud computing platform to support different types 
of applications efficiently, a cloud computing platform should be 
able to change quickly its configurations (possibly at multiple 
system abstraction levels) over changing resource requirements of 
various applications. As an initial attempt to build such a highly-
flexible cloud computing platform, we have proposed MicroBrick 
[1], a basic building node for constructing a cloud computing 
platform, and built a prototype cloud computing platform, called 
MiBiP (MicrobBrick-based Big Data Platform). In this poster, we 
describe our early experience of optimizing MiBiP, focusing on 
the automatic resource configuration aspect of MiBiP. In 
particular, we propose an intelligent middleware for our 
MicroBrick-based cloud computing systems, called 
AutoBrickChanger (or, in short, ABC), which automatically 
changes configurations of MicroBricks for high performance 
under varying cloud service/application workload. 

2. OVERVIEW of MiBiP 
Figure 1 shows an overview of our prototype MiBiP. The current 

version of MiBiP consists of three boards within its chassis and 
each board has three MicroBricks. Three boards within MiBiP are 
connected via an Ethernet network. Each MicroBrick (as indicated 
by a red box within the board picture) has sixteen PCIe ports 
which are connected to the common PCIe switch. Each PCIe can 
be connected to a computing module or a storage module.1 Since 
all modules are connected to each other via the common PCIe 
switch, very flexible intra-MicroBrick communications can be 
supported.  
By changing the number of computing modules and storage 
modules for MicroBricks, different types of MicroBricks can 
better match to diverse resource requirements of cloud services.
Furthermore, by dynamically changing groupings of computing 
modules and storage modules using a high-performance scalable 
PCIe switch, a MicroBrick achieves a high degree of the 
flexibility required by cloud storage systems. Although MiBiP can 
adapt to changing resource requirements, it is a key challenge in 
MiBiP to decide when and how to change configurations of each 
MicroBrick. A support for flexible dynamic configuration and 
resource management is the main responsibility of ABC.  

3. RESOURCE MANAGEMENT in MiBiP 
In order to realize the maximum performance potential of MiBiP, 
our proposed ABC layer needs to make two key decisions on a 
given cloud workload. First, ABC must understand the key 
requirements of the current cloud workload so that it can quickly 
decide the best configuration for each MicroBrick in MiBiP. 
Second, for a given configuration of a MicroBrick, ABC should 
decide how local resource (of the given MicroBrick) can be best 
utilized. In order to satisfy two key requirements of ABC, the 
proposed ABC was implemented in a hierarchical fashion. Figure 
2 shows an overview of the proposed ABC for MiBiP. The ABC 
layer is divided into two sub-layers, Global ABC (G-ABC) and 
Local ABC (L-ABC). The G-ABC sub-layer is responsible for 
managing each MicroBrick’s configuration while the L-ABC sub- 
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Figure 1: An Overview of MiBiP.
                                                                
1 Each computing module consists of a Quad Cortex A15 1.7-GHz 

ARM processor and a 256-GB mSATA SSD. A 400-GB NVMe 
SSD is used as a main shared storage module. A computing 
module of a MicroBrick runs Linux kernel v3.10. 
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Figure 2: An organizational overview of ABC for MiBiP. 
layer focuses on supervising resource managements within a given 
MicroBrick. 

3.1 Global Configuration Management  
One of the key resource management issues of MiBiP is how to 
configure each MicroBrick with computing modules and storage 
modules to meet diverse resource requirements of cloud 
services/applications. Since we are currently developing a specific 
configuration management policy of G-ABC, which takes into 
account of various workload characteristics, in this section, we 
present our early evaluation results on the impact of MicroBrick 
configurations on the system performance. 
In our preliminary evaluation of MiBiP, we used HiBench 
benchmark [2] and the YCSB benchmark [3] with Cassandra 
(Distributed DBMS). The workloads of YCSB are described in 
Table 1. As shown in Figure 3, for Wordcount, configuration 
C1_H, C1, C2 show the lowest elapsed time, however, for Sort, 
the configuration C2 shows the best. Likewise, for Workload A,
the configuration C1 shows the best throughput, however, for 
Workload B, the configuration C3 works the best. System 
performances for the same test case vary according to 
configurations. From this preliminary experimental result, we can 
see that there is no single best MicroBrick configuration for all 
test cases, and it is critical for G-ABC to change the configuration 
of each MicroBrick in an automatic fashion over varying resource 
requirements of cloud applications. 

3.2 Local Resource Management 
Once a MicroBrick’s configuration is fixed by G-ABC, each 
MicroBrick needs to be optimized for a given configuration for 
high performance. For example, we observed that, for Cassandra, 
a default work distribution policy of Linux works so poor that no 
meaningful work progress is ever made after a short initial active 
interval. As shown in Figure 4 (a), four CPU cores are all actively 
utilized in the initial execution interval. However, in the second 
interval, only CPU core 1 is actively working while the rest of 
CPU cores are virtually idle. This specific case illustrates a strong 
need for local resource management within a MicroBrick. The 
main function of L-ABC is to fine-tune various performance 
impacting local parameters (such as a work distribution policy) 
within a given MicroBrick. Dynamic resource allocation is a well 
known problem [4]. As an optimization case, we developed a new 
work distribution policy which works considerably better than the 

Table 1: Workloads of YCSB. 

Figure 3: Performance variations under different 
configurations. 
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Figure 4: A comparison of the CPU utilization.  

Figure 5: A comparison of the system throughput. 
default policy when there are a large number of works that need to 
be distributed. Our new work distribution policy considers more 
system status information in distributing tasks among multiple 
cores. When an interrupt comes in, for example, our new policy 
checks the numbers of waiting works in the work queue, the 
number of active CPU cores, and the average per-CPU load. 
Figure 4 illustrates that the per-core CPU utilization is 
significantly improved under our new policy over the default work 
distribution of Linux. For our YCSB cloud workloads (described 
in Table 1), our new policy alone improves the system throughput 
by up to 38% as shown in Figure 5. 

4. CONCLUSION
From our initial evaluation results of a MicroBrick-based cloud 
computing system, we strongly believe that efficient resource 
management during run time is a key enabling technique for 
developing a high-performance cloud computing systems. We are 
currently focusing on developing a more intelligent middleware 
including G-ABC and L-ABC.  
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