
Improving I/O Performance of Large-Page Flash
Storage Systems Using Subpage-Parallel Reads

Jisung Park1, Myungsuk Kim1, Sungjin Lee2, and Jihong Kim1

1Department of Computer Science and Engineering, Seoul National University
2Department of Information and Communication Engineering, DGIST

Email: 1{jspark, morssola75, jihong}@davinci.snu.ac.kr, 2sungjin.lee@dgist.ac.kr

Abstract—Handling small read requests is important on large-
page flash storage systems because small reads tend to waste
the read bandwidth. We present a system level solution that
avoids wasting the read bandwidth based on a new page read
operation, called the subpage-parallel read (SPREAD). SPREAD
achieves an optimal latency for a small read request by reading
requested subpages only. By improving the read performance
of applications as well as garbage collection, SPREAD improves
the overall I/O performance. Experimental results show that an
SPREAD-aware FTL can improve the IOPS and read latency by
up to 122% and 56%, respectively.

I. INTRODUCTION

In recent years, the capacity of a NAND flash chip has
steadily increased by about 30% per year [1] [2]. Although
this dramatic improvement in the capacity per flash chip
helped flash-based storage systems to be widely adopted
from mobile systems to enterprise servers, these high-capacity
NAND chips have also introduced several technical difficulties
at the storage system level because of their capacity-oriented
design decisions such as a large block size and a large page
size. For example, while the capacity of a NAND chip was
increased from 16 Gb to 128 Gb, the NAND page size was
increased by 8 times as well from 2 KB to 16 KB [1] [2].
In this paper, we investigate the large-page problem of high-
density NAND devices from a read operation’s perspective.

In order to maximally increase the capacity of a NAND
chip, a large NAND page is an (somewhat) inevitable design
choice. If a NAND page were small, more peripheral circuits
would be needed to access a larger number of small pages,
thus sacrificing a valuable die area for the peripheral circuits.
Furthermore, a large NAND page is helpful in improving the
I/O bandwidth because it allows more cells to be read/written
at the same time.

Although it is a reasonable design decision to use a large
page at the flash chip level, a large page size can degrade
the performance of a flash storage system. When a read
needs to access small data, if the NAND page is much larger
than the requested data, a large portion of the NAND page,
which was not requested by the read, is unnecessarily read,
thus increasing the read amplification factor (RAF) of the
read. (In this paper, we call such a read amplified). Since
a page is the minimum unit of read operations in NAND
flash memory, many amplified reads occur on large-page flash
storage systems, when small read requests are dominant. For
example, even when a file system needs to read only 4-KB

data from a NAND device with 16-KB pages, the full 16-KB
page should be read, wasting the read bandwidth in reading
the unwanted 12-KB data. When a workload is dominated
by small random reads (e.g., workloads in key-value stores
[3] and graph processing applications [4]), the effective read
bandwidth of the flash storage system can be degraded to just
25% of the maximum read bandwidth.

In addition to amplified reads caused from small read
requests of applications or operating systems, a large-page
flash storage system can generate many amplified reads inter-
nally as well because of its common mapping scheme. When
the storage system employs a fine-grained mapping (FGM)1

scheme, multiple (small) logical pages can be mapped to a
single (large) physical page. When these logical pages are
updated, many physical pages contain both valid and invalid
logical pages within the same physical page, thus resulting in
many amplified reads for accessing these fragmented physical
pages. For example, in our experiments, the read bandwidth
during garbage collection barely reached about half of the
maximum value under a workload with many small writes.

In this paper, we present a novel system-level technique
that solves the amplified read problem of large-page SSDs.
Our approach is based on an observation that the root cause
of the amplified read problem is that reading a part of a NAND
page is not size-proportional 2. In order to improve the size
proportionality of read operations, we aggressively exploited
another observation at the device level: the latency of a small
read can be significantly reduced by 1) sensing only necessary
NAND cells and 2) transferring only demanded data. Based
on our observations, at the device level, we devise a new
page read operation called a subpage-parallel read (SPREAD).
SPREAD can read multiple subpages at the same time while
skipping unneeded subpages so as to enable us to reduce the
read latency as well as read amplification factor. For a number
of possible combinations of valid subpages within a given
NAND page, SPREAD can decide whether to read a subpage or
not at the subpage granularity, thus making it size-proportional
even when reading multiple (not contiguous) subpages.

Based on the proposed SPREAD operation, we have devel-
oped an SPREAD-aware flash translation layer (FTL), called

1The FGM scheme is commonly used to avoid expensive read-modify-write
operations for small writes on large-page flash storages [5]. For more details,
see Section II.

2We define that a read is size-proportional if the read latency is proportional
to the size of the requested data.



spFTL. When a read is requested, spFTL decides which
subpages to be read in parallel, and issues the optimal number
of SPREAD operations to underlying NAND devices. SpFTL
aggressively exploits SPREAD when internal page migrations
are needed by SSD management tasks (e.g., garbage col-
lection) so that no read bandwidth is wasted by amplified
reads during page migrations. Our experimental results using
various benchmark tools and real-world traces show that
spFTL improves the read bandwidth and latency by up to
122% and 56%, respectively. By effectively exploiting the size
proportionality of SPREAD, spFTL can also reduce garbage
collection (GC) overheads by up to 13%, thus improving the
overall I/O performance of flash storage systems even under
write dominant workloads.

The rest of the paper is organized as follows. In Section II,
we present a key motivation behind SPREAD by explaining
how amplified reads affect the I/O performance. Section III
describes the proposed SPREAD with its implementation de-
tails. In Section IV, we present the proposed SPREAD-aware
FTL, spFTL. Experimental results follow in Section V, and
Section VI concludes with a summary and future work.

II. MOTIVATION

It is well known that the latency of page read tends to
increase as the NAND page size becomes larger [6]. However,
it does not mean that NAND devices with larger pages provide
inferior performance all the time than ones with smaller pages.
In fact, with large-page NAND, it is expected to get higher
performance with an improved read bandwidth. For example,
reading four separate 4-KB pages from the NAND device
requires about 180 µs, but the same amount of data can be
read from a 16-KB page in about 120 µs [1] [2]. However,
our observation shows that many real-world applications fail to
enjoy such high throughput of large-page NAND; instead, they
seriously suffer from the degraded bandwidth due to the read
amplification. We have found that this problem stems from
frequent amplified reads which read the whole page (e.g., 16
KB), but actually use only part of it (e.g., 4 KB).

In order to figure out what mainly causes amplified reads,
we have analyzed two popular applications in high perfor-
mance computing (HPC) systems, a key-value store [3] and
a graph processing application [4]. We first realized that the
HPC applications themselves generate lots of small random
reads to storage devices. Figure 1 shows distributions of read
data sizes of the two applications. As shown in Figure 1,
most values (over 90%) in the key-value store are smaller
than 1 KB, and more than 99% of adjacency lists in the graph
processing application are smaller than 4 KB. Moreover, since
both the applications exhibit very low spatial locality [3] [4],
performance improvements from page-cache or storage-buffer
hits are marginal.

Data fragmentation is another root cause that creates am-
plified reads. Modern SSDs typically employ a fine-grained
mapping (FGM) scheme that maps 4-KB logical pages to a

80%

85%

90%

95%

100%

(0, 512]

(512, 1K]

(1K, 2K]

(2K, 4K]

(4K, 16K)

Data size [byte]

KV1 KV2 KV3 GR2GR1

Fig. 1: Distributions of read data sizes.

larger physical page, say 16-KB3. The FGM scheme buffers
four 4-KB logical pages and writes them to a 16-KB NAND
page together. By doing this, FGM allows us to avoid ex-
pensive read-modify-write (RMW) operations in case where
a small random update comes [5]. For example, suppose that
one 4-KB logical page out of the four in the same physical
page is updated. If the mapping unit were 16 KB (which is
equivalent to a NAND page size), the FTL has to load the
entire 16-KB NAND page to an internal buffer (read), update
the buffered page with new 4-KB data (modify), and write
it back to another NAND page (write). On the other hand,
under the FGM scheme, up-to-date 4-KB data can be sent to
a new physical page, and its old version is just marked invalid.
While it is effective in avoiding RMW operations, the FGM
scheme results in serious data fragmentation inside physical
pages. Suppose that application wants to read those four 4-
KB pages again. In this case, the FGM scheme has to read
two 16-KB NAND pages: one to get three logical pages and
the other one to get the recently updated one. As a result, 32-
KB data have to be read from the NAND device to deliver
requested 16-KB data to the host.

In order to understand the impact of amplified reads on
I/O performance, we carried out preliminary experiments on a
16-GB DRAM-emulated SSD with 16-KB NAND pages. We
used FIO benchmark tool [7] to generate similar distributions
of read data sizes as in Figure 1. Figure 2(a) compares the read
bandwidths of four different workloads, KV1, KV2, GR1, and
SU. KV1 and KV2 mimic I/O distributions of the key-value
stores, while GR1 generates similar I/O patterns as the graph
processing application. SU (sequential update) is designed to
assess the impact of fragmentation: it first sequentially writes
16 GB of data, and randomly writes 4-GB data with 4-KB
I/Os, and finally issues 16-KB reads to the SSD. Ideal shows
the ideal read bandwidth that NAND devices would achieve
when there is no amplified read. As shown in Figure 2(a), the
read bandwidths under all the workloads are far lower than the
ideal bandwidth. It is worth noting that the read bandwidth
of SU decreases by 36% over Ideal, even though there are
only 16-KB reads. It indirectly shows that data fragmentation
greatly lowers the overall read throughput. Figure 2(b) shows
the RAF of the workloads which indicate the ratio of the
data actually read from NAND devices to the data requested
from the application. It clearly shows that amplified reads
significantly increase the RAF, wasting the raw bandwidth of

3The logical page size is typically set to 4 KB, to be equal to the default
block size of many modern file systems such as Linux ext4 and FAT32.

2



0

0.25

0.5

0.75

1

0.031 0.034 0.035

0.64

KV1 KV2 GR1 SU Ideal

N
o

rm
a

li
z
ed

 b
a

n
d

w
id

th

0.5

1

1.5

31.8 29.2 28.7

R
ea

d
 a

m
p

li
fi

ca
ti

o
n

 f
a

ct
o

r

1.56

KV1 KV2 GR1 SU

(a) Normalized read bandwidth. (b) Read amplification factor.

Fig. 2: Impact of amplified reads on I/O performance.

large-page NAND devices to read unwanted data.
The key insight from our preliminary experiments is that,

in order to achieve the high performance of large-page NAND
flash, a new NAND device-level read scheme is required which
enables us to selectively read data actually needed from NAND
devices. One might think that higher-level approaches would
be more feasible because these do not require us to modify
underlying devices. For example, increasing a data block size
of a file system might be able to remove the read amplification
problem. However, this could not be an ultimate solution.
As mentioned above, small random reads are dominant in
many applications. Thus, regardless of a file-system block
size (which is a data allocation unit), there will be many
small reads since the smallest I/O unit size is still 512 B
or 4 KB. Some might suggest to increase the minimum I/O
unit size to 16 KB or more. Since applications always issue
read requests larger than 16 KB to SSDs, it would eliminate
amplified reads at the device level. However, because of the
internal fragmentation at the file system level, most of data
read from the SSD are unnecessary and are not used. That
is, it just moves the amplified read problem to the file-system
level, instead of getting rid of its root problem.

III. SUBPAGE-PARALLEL READ

A. Design Requirements

Based on insights from Section II, we propose a new type
of a NAND device that supports selective subpage reads from
a NAND page, called SPREAD. An SPREAD-enabled NAND
device exposes a reconfigurable subpage read interface that
allows us to read one or more subpages in parallel from
a large-size NAND page. By sensing a limited number of
cells and transferring fewer bit values to the flash controller,
SPREAD shortens both the read (sensing) time tR at the device
and the time tDMA for transferring data to the flash controller,
thus significantly increasing the size proportionality of small
reads.

In order to realize the idea of SPREAD, we should answer
the following two questions: 1) how to decide the size of a
subpage which is the minimum unit of reading data, and 2)
how to support parallel reads for multiple subpages scattered
within a single large page. The answer to the first question
is straightforward. The minimum unit of a subpage read must
be aligned with the length of an error correction code (ECC)

Subpage to Read

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Subpage not to Read

(a) Contiguous subpages. (b) Fragmented subpages.

Fig. 3: Examples of parallel subpage read patterns.

code word. In NAND flash memory, since all written data
are encoded by an ECC function, we need to read an entire
ECC code word for obtaining original data previously written.
While it is different depending on NAND designs, recent
NAND devices employ a 2-KB ECC code word [8] , which is
small enough to minimize the read amplification by amplified
reads4.

The second question is a little more complicated, because
we have to take into account various patterns of demanded
subpages falling into a single large-size page. Figure 3 depicts
example cases of when multiple subpage reads happen on a
single page simultaneously. In Figure 3, we assume that the
size of a page is 16 KB and an ECC code word is 2 KB (Unless
otherwise stated, we keep using this NAND configuration).
To meet the ECC requirement, we logically divide a 16-KB
NAND page to multiple 2-KB subpages (SPs). Figure 3(a)
illustrates cases where small read requests come from the
host, but they result in contiguous subpages in the NAND
page. These cases can be easily handled: for subpage reads,
NAND devices just need the information about the offset of the
start subpage, along with the read size. However, the problem
gets more complicated when subpages are severely fragmented
over the NAND page as shown in Figure 3(b). In these cases,
providing the offset and the length of desired data is not
sufficient to support SPREAD.

The naive solutions for supporting those various subpage
combinations may be 1) adding dedicated read commands
for individual cases or 2) supporting only simple and limited
combinations (e.g., only continuous SPs). The former option
is not feasible because too many new NAND commands
should be added to NAND chips to cope with all the possible
combinations of subpage reads. In theory, when a NAND page
has n ECC code words, 2n−1 combinations are possible. The
latter one would reduce the design complexity of SPREAD, but
it may lose a lot of optimization opportunities.

B. Implementation of SPREAD Command

We address all the problems mentioned above with a simple
yet effective co-design of NAND devices and flash controllers.
Our key idea is to allow underlying flash controllers and
NAND devices to be aware of each subpage’s necessity, by

4The size of an ECC code word directly affects the error correction
capability. In general, the longer code words, the stronger capability. The 2-
KB LDPC is widely adopted in recent NAND flash memory for compensating
the degraded NAND reliability.

3



Bit lines

SPREAD-Enabled NAND Device

Flash Controller

SPREAD Command

Read Addr Addr C3h

Valid bitmap

Addr set

ECC

Read dataRE toggle

Volatile Memory (DRAM)

Decoded data

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Page Buffer 

Column Decoder
Control Logic

Offset Management

1 1 0 0 0 0 1 1

SP Selector

Adaptive Pre-charge/

Discharge Controller

VB Reg

Col. set

BL selec.

Dynaimc Address Controller

Fig. 4: An operational overview of SPREAD.

providing them a valid bitmap. The valid bitmap indicates the
information of all the demanded subpages within a NAND
page. Figure 4 illustrates how the proposed SPREAD command
works with 16-KB NAND pages and 2-KB ECC words. As
shown in Figure 4, the 8-bit valid bitmap for a page read is
delivered to the target flash controller and NAND device via an
extended NAND read command with an additional command
slot for the valid bitmap. All the possible combinations of
subpage reads, therefore, can be specified in a unified single
NAND read command. Note that a full page read can be
performed by using the same command with a valid bitmap
of 0xFF.

With the new NAND read command, SPREAD effectively
reduces tR and tDMA. SPREAD shortens tR by selectively
reading only necessary subpages within the target page. When
an SPread command arrives, the given valid bitmap is tem-
porarily kept in a dedicated register, called a VB register.
Referring to the VB register, the SPREAD-enabled NAND
device selectively pre-charges the desired bit lines (BLs), while
the others are inhibited. The additional selective pre-charging
logic, an SP selector in Figure 4, does this task by simply
pulling down the BLs of inhibited subpages. For SPREAD,
the elapsed times for pre-charging (tPRE) and discharging
(tDISCH ) BLs are not fixed, but vary depending on the number
of BLs we want to sense. To deal with such variable elapsed
times, it is required to add extra logics, denoted by Adaptive
Pre-charge/Discharge Controller in Figure 4. Depending on
the requested subpage configuration, it chooses appropriate
tPRE and tDISCH which are sufficient for sensing all the
desired BLs among the pre-defined values. This selective
sensing makes tR vary depending on the number of BLs since
tR is mostly decided by tPRE and tDISCH . That is, as the
less BLs are being sensed, the shorter tR is. This adaptive
control of tPRE and tDISCH is the key to make SPREAD
size-proportional.

SPREAD transfers only the sensed bit values to the stor-
age firmware, which results in the reduction of tDMA. The
SPREAD-enabled NAND device maintains the valid bitmap
inside, so it is able to specify the column offsets for fetching
the required bytes from the page buffer, skipping unwanted
subpages. This is accomplished by adding a simple FSM logic
to the NAND device which dynamically generates column
addresses. To selectively send the required bytes to the flash

TABLE I: Estimated SPREAD latencies over difference sizes.

size [KB] 2 4 6 8 10 12 14 16
tDMA [µs] 2.5 5 7.5 10 12.5 15 17.5 20
tR [µs] 35 45 55 65 75 85 95 99
tSPR [µs] 37.5 50 62.5 75 87.5 100 112.5 119

controller via DMA, it is inevitable to modify the DMA master
engine (Dynamic Address Controller in Figure 4) in the flash
controller. This modification, however, is actually simple; the
DMA engine just needs to toggle RE signals for only bytes it
wants, and the NAND device sends sensed bytes to the flash
controller in sync with RE signals.

Although there exists a similar approach to perform such a
dynamic DMA without the proposed SPREAD, it can rather
increase tDMA due to additional overheads. For example, an
existing random data out (RDO) NAND command [9] allows
us to manually modify the column offset of NAND devices.
However, without a modification of underlying hardware, the
storage firmware (i.e., FTL) is responsible for performing the
dynamic DMA, and it should issue one or multiple RDO
commands by itself to the target flash controller and NAND
device. Such an approach can introduce additional overheads
for handshaking and context switching.

To evaluate the benefit from SPREAD, we have estimated the
SPREAD latency tSPR(n) for n-KB reads, which is the sum
of tR(n) and tDMA(n). It is obvious that tDMA(n) is linearly
proportional to the size n, since the sensed data are transferred
by one byte per RE toggle. We can also expect that tR(n),
which largely depends on tPRE(n) and tDISCH(n), must be
shorter with a smaller n, since fewer BLs are pre-charged and
discharged.5 Although it is ideal to develop a new SPREAD-
enabled device to get the exact value of tR(n), because of
practical limitations in academia, we have estimated the tR(n)
based on NAND device physics [11] [10] using known NAND
device parameter values [1]. Table I summarizes the estimated
tSPR(n) for reading n-KB data.

IV. SPFTL: SPREAD-AWARE FTL

We have developed an SPREAD-aware FTL, spFTL, which
leverages the proposed SPREAD command. Figure 5 depicts
an overall organization of spFTL, which is based on an page-
level FTL with the FGM scheme. The main addition in spFTL
over other FGM-based FTLs is the SPREAD Mode Selector
(SMS) module. The SMS module is responsible for deciding
a proper SPREAD mode for the SPREAD command before the
SPREAD command is sent to a NAND device.

Figure 5 illustrates how the SMS module constructs appro-
priate SPREADS for a host read request. In this example, we
assume that a logical mapping size is 4 KB while the NAND
page size is 16 KB. As shown in Figure 5, logically contiguous
pages may map to multiple physical pages under the FGM
scheme; four subpages whose logical addresses are F0h, F1h,

5tPRES(n) is hardly depends on the size n since BLs are pre-charged
in parallel. However, tDISCH(n) is linearly proportional to n, since all the
BLs are discharged though a single common source line (CSL) [10].

4



(C3h, 00h)

(C0h, 01h)

(0Ch, 02h)

(03h, E0h)

(CCh, E1h)

(3Ch, E2h)

(3Fh, E3h)

(VB, PPA)

(VB, PPA)

Host read (F0h ~ F3h)

SPREAD Mode Selector (SMS)

Internal read 

(Block#56)
L2P mapping, VPB

SSD Manager

Garbage

Collector

Wear

Leveler

Fine-Grained Mapping Table

F0h 00h

F1h 01h

F2h 02h

F3h 00h

... ...

... ...

LPA
[31:2]

00b

00b

10b

11b

...

...

[1:0]

PPA

L2P Mappings

Valid Page 

Bitmaps

...

56

...

0

BLK

...

1A67h

...

9FFFh

VPB

Flash Controller

NAND Array

...

Block#56

00h
01h
02h

F0h F1h F2h F3h
F1h

F2h

Block#0

03h

E0h
E1h
E2h
E3h

Valid Invalid

Fig. 5: An organizational overview of spFTL.

F2h and F3h were written together, but two of them F1h and
F2h were overwritten with new data at different times later.
Based on the logical address range of the host read request, the
SMS module looks up the L2P mappings and figures out which
subpages can be read in parallel by a single SPREAD. Once
the subpages are decided, the SMS module sends an SPREAD
command with a proper valid bitmap to a flash controller. In
the above example, spFTL uses three SPREADS to read the
16-KB logical address range requested by host: one for F0h
and F3h, one for F1h, and one for F2h. (Note that when
SPREAD is not used, three full page reads, that is, 3×16-KB
reads, are required.)
SpFTL exploits the SPREAD to reduce internal data copy

overheads for garbage collection and wear-leveling. Once the
garbage collector and wear-leveler are invoked, it is required
to read physical NAND pages for copying valid data to other
locations. In many cases, physical pages to read are severely
fragmented with valid and invalid ones as shown in Figure 5.
When the garbage collector or wear-leveler issues internal
reads for a target block (e.g., Block#56 in Figure 5), the
SMS module decides an optimal SPread mode for each page
with the block’s valid page bitmap (VPB) which indicates the
status of all the physical pages in the block. By selectively
reading only valid subpages with SPREAD, spFTL can avoid
expensive amplified reads, thereby improving the garbage
collection and wear-leveling performance.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

To evaluate the effectiveness of the proposed SPREAD,
we have implemented spFTL as a host-level FTL using an
open flash development platform [12]. Our evaluation platform
supports 512-GB capacity in maximum, but we limited its
capacity to 16 GB for fast evaluations. The target SSD was
composed of 4 channels, each of which had 2 NAND chips.
Each chip was comprised of 512 NAND blocks with 256 16-
KB NAND pages. Based on the same NAND specification
used in our estimation [1], full-page write latency (tPROG)
and block erasure latency (tBER) were set to 660 µs and 3.5
ms, respectively. The estimated values in Table I were used
for modeling a 16-KB page read latency (99 µs) and SPREAD
latency with the other sizes.

TABLE II: I/O characteristics of five benchmark workloads.

workload read:write dominant request size
KV read only 2-KB reads over 90%

GRP read only 4-KB:8-KB = 3:2
PRJ 9:1 4-KB and 16-KB reads similarly mixed
USR 7:3 16-KB reads and 4-KB writes
STG 3:7 16-KB reads and 4-KB writes

The five distinct I/O workloads were used for our evaluation.
Table II summaries the characteristics of the workloads in
terms of a read request size and a read/write ratio. For
evaluating how spFTL better handles small reads of HPC
applications, we collected traces from two read-only work-
loads, KV (key-value stores) and GRP (graph processing
applications), from db bench [13] and LinkBench [14], re-
spectively. To evaluate the performance impact of SPREAD in
more general applications, we used three traces from MSR-
Cambridge traces [15]. In USR and STG, reads and writes
were issued in a mixed manner but, in PRJ, reads were
dominant.

We compared our spFTL with two different FTLs,
pageFTL and dmaFTL. PageFTL is a baseline page-level
mapping FTL with the FGM scheme. DmaFTL only used
the dynamic DMA to reduce tDMA for small reads, but tR
remained the same as in pageFTL since it had to read the
entire 16-KB page from NAND chips. SpFTL can shorten
tDMA and tR, as explained in Section III-B.

B. Evaluation Results

In order to compare the performance gains of spFTL over
the other FTLs, we measured IOPS values and read latencies
for each FTL. As shown in Figure 6(a), spFTL improved
IOPS by up to 2.2x and up to 1.9x over pageFTL and
dmaFTL, respectively. As expected, this benefit mostly came
from the reduction of unnecessary data reads and data transfers
for small reads. As shown in Figure 6(b), spFTL reduced
the average read latency up to 56% and 50% over pageFTL
and dmaFTL, respectively. DmaFTL also exhibited higher I/O
performance than that of pageFTL, but the improvements
gains were far limited (at most 18%) over spFTL. This
was because, with the high speed 0.8 Gb/s I/O bus, tDMA

accounted for an insignificant proportion of the total read
latency.

One notable observation in our experiments was that spFTL
could improve the overall I/O performance even under a
workload with many writes. It was an unexpected benefit since
spFTL was not optimized for improving write performance
at all. Assuming that a read/write ratio of a workload is 7:3,
the maximum performance gain could not be higher than 27%
because the write latency was about 6.6x longer than the read
latency. However, as shown in Figure 6(a), spFTL achieved
performance gains over pageFTL by 44% and 10% under
USR and STG, respectively, despite their write ratios. As
will be explained below, this was due to the negative effect of
internal fragmentation.

5



0

0.5

1

1.5

2

KV

103

104

102

pageFTL dmaFTL spFTL

GRP PRJ USR STG

R
ea

d
 r

es
p

o
n

se
 t

im
e 

[u
s]

0

1

2

3

4

5

7.89

R
ea

d
 a

m
p

li
fi

ca
ti

o
n

 f
a

ct
o

r

N
o

rm
a

li
z
ed

 I
O

P
S

pageFTL dmaFTL spFTL pageFTL spFTL

(a) Normalized IOPS. (b) Read response time. (c) Read amplification factor.

Fig. 6: Performance comparisons of different FTLs under five workloads.

To better understand how spFTL outperformed the other
FTLs in detail, we measured RAF values in spFTL and
pageFTL as shown in Figure 6(c). The RAF values of spFTL
in small read dominant workloads (KV, GRP, and PRJ) were
very closed to 1. This told us that the minimum unit size of the
SPREAD operation (i.e., 2 KB) was small enough to eliminate
read amplification for small reads. Our results showed that,
even under 16-KB reads dominant workloads (USR and
STG), the RAF values of pageFTL were significantly higher
(more than that in PRJ) than those in spFTL. This was
because small writes under the FGM scheme created serious
internal fragmentation within NAND pages, which greatly
increased the number of amplified reads.

Next, we investigated the impact of SPREAD on reducing
GC overheads. For USR and STG, we measured the average
elapsed time per GC. Some might expect that, since page
writes take much longer than page reads, the GC execution
time would be dominated by writing valid data, and thus,
the benefit of using SPREAD would be trivial. However, our
experimental results revealed that, in USR and STG, spFTL
reduced the GC execution times over pageFTL by 13% and
by 7% on average, respectively. This is because NAND pages
were highly fragmented due to many small writes, so most
of them held valid and invalid logical pages within the same
physcial page. Therefore, in pageFTL, the number of logical
pages moved (or written) to free locations can be decreased,
while the number of (amplified) page reads remains the same.
Consequently, overheads caused by amplified reads accounted
for a nontrivial proportion of the total GC I/Os.

VI. CONCLUSIONS

We have presented a new system-level solution that sig-
nificantly mitigates the amplified read problem on large-page
NAND devices. In order to improve the size proportionality
of small reads, we proposed a new NAND read operation,
SPREAD, which allows selected multiple subpages to be read
in parallel. By slightly extending the existing data path and
control of the NAND read operation, SPREAD supports most
reads without read amplification. In order to take advantages of
SPREAD-enabled NAND devices at the storage level, we have
developed an SPREAD-aware FTL, spFTL. Our experiment
results show that spFTL can increase the IOPS and read
latency by up to 122% and 56%, respectively.

Our work in this paper can be extended in several directions.
For example, in this paper, we have not considered the large-
page problem from a write operation’s perspective. It will be
an interesting extension to combine the existing subpage write
scheme (e.g., [5] [16]) with our SPREAD-based technique.

ACKNOWLEDGEMENTS

This work was supported by Samsung Research Funding
& Incubation Center of Samsung Electronics under Project
Number SRFC-IT1701-11.

REFERENCES

[1] D. Kang et al., “256gb 3b/cell v-nand flash memory with 48 stacked
wl layers,” in Proceedings of IEEE International Solid-State Circuits
Conference (ISSCC), 2016.

[2] A. L. Shimpi. (2014) Micron announces 16nm 128gb mlc nand, ssds
in 2014. [Online]. Available: https://www.anandtech.com/show/7147/
micron-announces-16nm-128gb-mlc-nand-ssds-in-2014

[3] B. Atikoglu et al., “Workload analysis of a large-scale key-value store,”
in ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1,
2012, pp. 55–64.

[4] H. Liu and H. H. Huang, “Graphene: Fine-grained io management for
graph computing,” in Proceedings of USENIX Conference on File and
Storage Technologies (FAST), 2017.

[5] M. Kim et al., “Improving performance and lifetime of large-page
nand storages using erase-free subpage programming,” in Proceedings
of Design Automation Conference (DAC), 2017.

[6] L. M. Grupp et al., “The bleak future of nand flash memory,” in
Proceedings of USENIX Conference on File and Storage Technologies
(FAST), 2012.

[7] J. Axboe, “Fio-flexible i/o tester synthetic benchmark,” 2005. [Online].
Available: https://github.com/axboe/fio

[8] K. Zhao et al., “Ldpc-in-ssd: Making advanced error correction codes
work effectively in solid state drives,” in Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2013.

[9] JEDS230, “Nand flash interface interoperability,” JEDEC Solid State
Technology Association, Tech. Rep., 2014.

[10] R. Micheloni et al., Inside NAND Flash Memories. Springer, 2010.
[11] J. E. Brewer et al., Nonvolatile Memory Technologies with Emphasis on

Flash. IEEE Press, 2008.
[12] S. Lee et al., “Application-managed flash,” in Proceedings of USENIX

Conference on File and Storage Technologies (FAST), 2016.
[13] Facebook. (2013) Rocksdb git repository. [Online]. Available: https:

//github.com/facebook/rocksdb
[14] T. G. Armstrong et al., “Linkbench: a database benchmark based on the

facebook social graph,” in Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2016.

[15] D. Narayanan et al., “Write off-loading: Practical power management
for enterprise storage,” in Proceedings of USENIX Conference on File
and Storage Technologies (FAST), 2008.

[16] X. Zhang et al., “Reducing solid-state storage device write stress through
opportunistic in-place delta compression,” in Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2017.

6


