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PAPER

PAW: A Pattern-Aware Write Policy for a Flash Non-volatile Cache

Young-Jin KIM†a), Member, Jihong KIM††, Jeong-Bae LEE†††,
and Kee-Wook RIM†††, Nonmembers

SUMMARY In disk-based storage systems, non-volatile write caches
have been widely used to reduce write latency as well as to ensure data
consistency at the level of a storage controller. Write cache policies should
basically consider which data is important to cache and evict, and they
should also take into account the real I/O features of a non-volatile device.
However, existing work has mainly focused on improving basic cache op-
erations, but has not considered the I/O cost of a non-volatile device prop-
erly. In this paper, we propose a pattern-aware write cache policy, PAW
for a NAND flash memory in disk-based mobile storage systems. PAW
is designed to face a mix of a number of sequential accesses and fewer
non-sequential ones in mobile storage systems by redirecting the latter to
a NAND flash memory and the former to a disk. In addition, PAW em-
ploys the synergistic effect of combining a pattern-aware write cache policy
and an I/O clustering-based queuing method to strengthen the sequentiality
with the aim of reducing the overall system I/O latency. For evaluations,
we have built a practical hard disk simulator with a non-volatile cache of
a NAND flash memory. Experimental results show that our policy signifi-
cantly improves the overall I/O performance by reducing the overhead from
a non-volatile cache considerably over a traditional one, achieving a high
efficiency in energy consumption.
key words: disk-based storage systems, non-volatile cache, NAND flash
memory, pattern-aware write cache policy, I/O clustering, performance en-
hancement

1. Introduction

For decades, hard disks have been the most popular mass
storage in both server and mobile systems. Due to highly
low cost per unit capacity, mobile systems such as PDA,
PMP, and UMPC (ultra-mobile PC) also adopt hard disks
as secondary storage. However, hard disks have poor I/O
performance for random I/O requests because a seek time
basically depends on the position variation of a disk head
between successive I/O requests. Thus, there have been a
lot of studies aiming at improvement of the I/O performance
in disk-based storage systems. The representative is using
a cache close to a disk in order to store the requested data
with the expectation of their being accessed again in the near
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future. A modern disk controller tends to employ a volatile
device like a DRAM as a read cache as well as a non-volatile
one as a write cache [1].

Extensive studies on read caches are reported in the lit-
erature (especially at the page cache level), which seek to
achieve significant I/O performance enhancement by filter-
ing I/O requests directed to a disk more efficiently than a
widely-used read cache algorithm, LRU [2]. However, man-
agement of write caches has been relatively less studied.
Furthermore, the majority of disk I/O requests, which are
filtered by a page cache in the operating system, are known
as writes in the disk-based server systems [3]. Similar disk
I/O request patterns are found to occur often in mobile com-
puting environments [4]. Therefore, the research on a good
write cache management policy is a crucial issue.

In this paper, we propose a simple but practical write
cache policy for a NAND flash memory in disk-based mo-
bile storage systems. The proposed policy redirects write
requests to a non-volatile cache of a NAND flash memory
or a disk according to access patterns with the aim of op-
timizing the overall I/O performance of a disk-based mo-
bile storage system. The policy is designed to reduce the
disk I/O latency by forwarding non-sequential write data to-
wards a disk as well as to mitigate excessive write accesses
to a NAND flash memory, thus resulting in fewer garbage
collections. Furthermore, in order to strengthen the sequen-
tiality of the I/O requests we polish up the policy in com-
bination with an I/O clustering-based queue scheduling al-
gorithm. We also investigate how to achieve high energy
efficiency by our policy.

2. Non-volatile Write Cache

There are two main benefits of using a non-volatile cache
(hereafter, we call this NVC) in disk-based storage systems.
The first is to enable writing data to an NVC, thus obtaining
fewer disk accesses. That is, an NVC can absorb not a few
write accesses, serving as a write cache. Thus, an NVC can
reduce the write latency of a disk. At the level of an op-
erating system, updates to meta data in a file system occur
frequently in small sizes, resulting in performance degrada-
tion due to large seek times from random data accesses on
a disk. Using an NVC can be beneficial in mitigating such
performance degradation in a disk-based system.

The second is to enable maintaining data consistency in
the overall storage systems. Unlike a DRAM cache, even at
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power failure an NVC can retain data safely. For example,
important data such as bank transaction data can be written
to an NVC instead of a DRAM cache and be flushed to a
disk later for data synchronization. As a result, using an
NVC can be profitable in upraising reliability in a storage
system.

3. Motivation

In last decades, a NAND flash memory has been a leading
non-volatile device that competes with hard disks in mo-
bile storage device markets. The popular usage of a NAND
flash memory can be attributed to its gradually progressive
technical innovations. A NAND flash memory has many
advantages over hard disks such as fast I/O access time,
lower-power consumption, and higher shock resistance [15]
although it has still high cost per unit capacity. Thus, using
a NAND flash memory as a write cache can be attractive
because its non-volatility is useful in write caching and the
cost is also acceptable if the NAND flash write cache has a
limited capacity.

A NAND flash memory consists of many physical
pages and several pages are clustered into blocks. In the
NAND flash memory, reads and writes are processed by a
unit of page and erases occur by a unit of block. Data is
written to a NAND flash memory in a way of out-of-place
update unlike a hard disk. That is, the original page is inval-
idated and the required data is written to a new page. This
feature requires an address mapping software called a flash
translation layer (FTL), which maps a logical block address
from a host operating system into a pair of a physical page
number and a physical block number [16], [17].

If a write access arrives and there is no free space (ac-
tually, the number of free blocks goes below a threshold
value), blocks with some invalid pages should be recycled
into free blocks. This process is called garbage collection
(hereafter, we call this GC) and is also managed by an FTL.
A GC policy selects a victim block for block reclamation.
During a GC process, copying the valid data (pages) of a
victim block to a free block and erasing the victim block are
required. Hence, the overall GC overhead includes a read
access time and a write access time multiplied by the num-
ber of valid pages, respectively, and an erase latency.

Since the GC overhead reaches several times of the
write access time, frequent writes would be problematic for
the overall I/O performance of a NAND flash memory. Es-
pecially when a NAND flash memory is used as an NVC,
this phenomenon will become worse because all write oper-
ations go through the NVC and thus GC may occur repeat-
edly due to the limited size of the NVC, which is usually
much smaller than that of a disk.

Therefore, in case of using a NAND flash memory as a
write cache, it is highly important to consider the GC over-
head, which may stem from the excessive writes due to the
real I/O features of a NAND flash memory. However, ex-
isting works using a NAND flash memory as a write cache
didn’t investigate such overheads carefully. Our motivation

comes from this point. In this paper, we suggest a pattern-
aware write cache policy for a disk-based storage system
with a NAND flash-based NVC, which is combined with an
I/O clustering-based queuing method. Thus, we seek to find
an efficient solution of mitigating the GC and write over-
heads in a NAND flash-based NVC, while suppressing the
number of I/O requests directed to a disk in order to boost
the overall I/O system performance in a disk-based storage
system.

4. PAW: Pattern-Aware Write Cache Policy

4.1 Overview of PAW

In disk-based storage systems, there are many approaches
to obtain performance enhancement at various levels of de-
vices such as a cache, a queue, a controller, and media it-
self, and related software including a file system and a de-
vice driver. Figure 1 shows a logical view of a comput-
ing system with storage devices and illustrates that crucial
performance-enhancing approaches at each level are highly
related to cache management and queue scheduling [18].

Cache management is an effective performance-
enhancing method by keeping data longer in a cache, which
is likely to be used in the near future again regardless of
the position of the cache. I/O requests, which reach a page
cache at a file system level, will have different data attributes
from those getting to a cache at a device level in the aspects
of locality and I/O type. Thus, a well-devised cache man-
agement policy will have significant impact on the overall
storage performance.

In the meantime, queue scheduling has the purpose
of minimizing the average request response time by re-
ordering I/O requests in the request queue at a device driver
in the operating system or at a device controller within a de-
vice. Since the order of processed requests and the size of
clustered requests have much influence on the performance
of a storage system in terms of geometric operations, es-
pecially of a disk-based one, how well we schedule the re-
quests in a queue is very important.

Fig. 1 Logical view of a system with storage devices [18].
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Gill et al. proposed a performance-enhancing tech-
nique using wise ordering for writes called WOW. WOW
is a write request ordering technique proposed for a non-
volatile cache, combining a cache eviction policy and a
queue scheduling method to achieve temporal locality and
spatial locality together synergistically [1].

However, WOW doesn’t consider the actual I/O latency
of an NVC itself by assuming a volatile DDR memory to
be an NVC. Since a DDR memory is quite different from a
non-volatile device like a NAND flash memory in the aspect
of I/O behaviors. For instance, a write access is processed
within several nano-seconds for a DDR memory while it
may be served for a few milli-seconds for a NAND flash
memory (if there is no free block and thus garbage collec-
tion should occur, the worst latency may amount to about
1 second). Therefore, such assumption can cause an incor-
rect estimation of the processing time of I/O requests and
impair the behavioral stability of the overall storage system
by breaking synchronization between I/O operations in var-
ious devices. As a result, it will become difficult to evaluate
and optimize exactly the I/O performance of a target storage
system.

Our approach tries to remove the above irrationality by
employing a NAND flash memory as an NVC and supply-
ing a realistic I/O behavioral model for an NVC at the level
of a storage device. It aims at obtaining the performance-
enhancing potential from a synergistic combination of cache
management and queue scheduling.

Recent studies show that typical mobile workloads
have mixed access patterns of a large number of sequen-
tial accesses, big and small loop-type accesses, and a small
amount of temporal accesses [26]–[28]. This is because ap-
plications in mobile devices have repetitive access patterns.
For example, we execute an email program, a media player,
a game program, a scheduling program, etc. circularly on a
PDA. Such accesses will produce a mix of sequential ac-
cesses and random (or temporal) ones. Thus, it is important
to deal with frequent sequential accesses together with ran-
dom ones in mobile workloads since they might cause crit-
ical performance degradation of the overall system if they
would not be faced.

To this end, we propose a practical pattern-aware write
cache policy (PAW), which takes into account the access
patterns of the load as well as the I/O features of a NAND
flash memory in a disk-based mobile storage system to opti-
mize the overall I/O performance. Then, we augment PAW
with an I/O clustering-based queue scheduling algorithm in
order to utilize better sequentiality of I/O requests and thus
achieve a high efficiency in the performance as well as en-
ergy consumption.

Our contributions can be summarized three-fold. First,
PAW is designed to face the characteristic of mobile work-
load patterns, which mainly consist of a mix of numerous
sequential accesses and fewer non-sequential ones, in het-
erogeneous storage systems. Second, PAW employs a syner-
gistic effect of combining a pattern-aware write cache policy
and an I/O clustering-based queuing method to strengthen

the sequentiality. Third, PAW tries to mitigate the I/O over-
head of a NAND flash-based NVC, which mainly comes
from GC operations occurring when many writes reach it,
considering its real I/O features.

4.2 Algorithm of PAW

PAW is based on workload-aware load distribution, redirect-
ing write requests to achieve high overall I/O performance
in consideration of I/O access patterns. The rationales are
that a disk and a NAND flash memory have different I/O
behavioral features according to I/O access patterns and a
large portion of I/O requests onto a disk is writes, as was
mentioned previously. Figure 2 shows the overall structure
of a proposed storage system with PAW, which consists of a
device driver with a queue and a queue manager at a kernel
level and a disk device with a disk controller, a DRAM, and
a NAND flash-based NVC at a device level.

When a write I/O block access arrives, a disk controller
checks if its access pattern is sequential or not and deter-
mines if it will write through the block to an NVC or a disk.
Whether a required block is sequential or not depends on the
continuity from the last LBA of a prior I/O request to the
present one. If the LBA of an accessed block is continued to
LBAs of pre-accessed blocks by a given threshold, the block
is set as sequential. Otherwise, it is assigned random.

If a write access is random, it will be inserted into the
MRU position of an NVC. Otherwise, the write will be for-
warded to a disk. Therefore, redirecting data requests to-
ward the NVC tends to absorb a considerable number of I/O
accesses, which otherwise will be forwarded to the disk, and
puts the disk to a lower-power mode, obtaining performance
improvement and energy saving concurrently. When a dirty
block is evicted from the NVC, it will be flushed to the disk.
Otherwise, it will be discarded.

Our pattern-aware write cache management policy is
polished with I/O clustering-based queuing in order to boost
the overall performance as well as enhance the energy effi-

Fig. 2 Overall structure of a proposed storage system with PAW.
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VARIABLES AND DEFINITIONS

PLUGGING TIMEOUT: timeout value to unplug requests in the queue (i.e., re-
quest queue)
MAX REQ QUEUE SIZE: maximum size of request queue
SEQUENTIALITY THRESHOLD: threshold to determine if a request is sequential
request queue: request queue
count: counter for checking insequential requests
lru list: list for NVC cache management

QUEUING ALGORITHM

At the time when each request arrives,
if (elapsed time of the beginning request of request queue >

PLUGGING TIMEOUT)
call service ioreq
//unplug the device with a current timestamp

else
Initialize count
Traverse all requests to find sequentiality between the current request and a mem-

ber request
if a candidate is found, merge two requests
else count++

if (count ==MAX REQ QUEUE SIZE)
call service ioreq
//unplug the device with a current timestamp
insert the current request to the end of request queue

else
insert the current request to the end of request queue

PATTERN-AWARE WRITE CACHE MANAGEMENT

service ioreq:
if (length of the request >= SEQUENTIALITY THRESHOLD)

Forward the request to a disk
else

Forward the request to an NVC
if (I/O type == READ)

call read NVC
else

call write NVC

read NVC:
if a cache hit occurs

Read from pages until the requested I/O size is satisfied
Update an lru list

else // cache miss
Read data from a disk
Write data to a flash memory

if valid pages are insufficient, invoke GC
Update an lru list

write NVC:
if a cache hit occurs

Write pages to a flash until the requested I/O size is satisfied
if valid pages are insufficient, invoke GC

Update an lru list
else // cache miss

Read data from a disk
Write data to a flash memory

if valid pages are insufficient, invoke GC
Update an lru list

Fig. 3 The PAW algorithm.

ciency of the storage system. Since I/O clustering strength-
ens the sequential property of each request in a request
queue within a device driver [19], we conceive that the can-
didates of sequential ones among write accesses are sure to
be more sequential and small writes, which might not be
clustered together, are likely to have high temporal and low
sequential localities.

With our scheme, write requests filtered at the request

queue by the I/O clustering-based queuing method will ar-
rive at a disk controller. The disk controller decides which
write accesses are marked as sequential or random (i.e., non-
sequential) according to their sequentialties. Random write
requests will be forwarded to an NVC and sequential ones
to a disk.

Figure 3 shows the detailed algorithm of PAW and re-
lated data structures. There are two parts in the PAW al-
gorithm. First is the queuing algorithm and second is the
pattern-aware write cache management routine. The queu-
ing algorithm manages a request queue called request queue
to serve and schedule I/O requests in it. When each request
arrives, the elapsed time of the beginning request member in
this queue will be checked against PLUGGING TIMEOUT,
which variable is a time value to unplug (i.e., process) it.
To count the number of merged requests, a variable count
is used. If no requests are merged, that is, count reaches
MAX REQ QUEUE SIZE, the request with a current times-
tamp will be unplugged.

In the pattern-aware write cache management routine,
unplugged requests are processed. If the sequentiality of a
request reaches SEQUENTIALITY THRESHOLD, it will be
determined to be sequential and forwarded to a disk directly.
Otherwise, the request will be forwarded to an NVC under
the assumption of its having less sequentiality, that is, better
randomness. It is natural that if requests have better random-
ness they will have more chances to have higher temporal
locality. Thus, we expect that cache hits at the NVC will in-
crease noticeably by storing request with less sequentiality
to an NVC. To this end, PAW has two mechanisms to rein-
force the sequentiality in dealing with I/O requests. First is
to use an I/O clustering-based queuing method. Second is
to use a threshold value in order to determine if a request is
sequential or not.

5. Simulation and Results

5.1 Simulation Environment

We developed a trace-based I/O simulator which mimics the
storage architecture shown in Fig. 2 and incorporated LRU
and PAW. Our simulator models a device driver at a kernel
level and an NVC and a disk at a device level. The device
driver includes a queue manager which controls a request
queue. As described previously, this queue is employed to
realize I/O clustering by accumulating requests within it and
merging some into a large one if sequentiality is found with
the purpose of achieving the overall performance enhance-
ment.

The hard disk model we used is MK4004GAH with a
1.8′′ form factor and 4,200 RPM [25] and the NAND flash
memory model used as an NVC is the K9K8G08U0M [21],
which is a 1 G × 8 bit NAND flash with a 2 KB page size
and a 128 KB block size. Table 1 shows the characteristics
of our used hard disk and NAND flash memory. The disk’s
read (or write) latency is equal to the sum of the average
rotation time and the average seek time. In this table, the
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Table 1 Characteristics of the used hard disks and NAND flash memo-
ries [21], [25].

Device
MK4004GAH

(1.8′′ hard disk)
K9K8G08U0M
(NAND flash)

Rotational speed (rpm) 4,200 N/A
Avg. rotation time (ms) 7.1 N/A

Avg. seek time (ms) 15 N/A

Latency
(512 B)

Read 22.1 (ms) 25 (µs)
Write 22.1 (ms) 200 (µs)
Erase N/A 1.5 (ms)

Power
(mW)

Active 1400 33
Idle 400 0.13

Standby 200 N/A

transfer time of the disk is invisible but we modeled it as
7 us per sector in our simulator.

In experiments, we assigned the capacity of the flash
memory to 4, 8, 16, 64, 128, and 256 MB. Our flash mem-
ory simulator simulates a NAND flash memory and its con-
troller. It includes an FTL, which consists of an address
mapper, a reclamation manager, and a wear leveler. We have
implemented a page-level address mapping policy [22] and
adopted a greedy policy for block reclamation and wear lev-
eling. At each I/O access, when writes to the NVC occur, the
FTL of the flash memory will check whether there is enough
space (i.e., block) to write data. If the number of free blocks
reaches the lower bound, RECYCLING THRESHOLD, GC
will starts. Otherwise, the FTL will just tries to get a free
block and write data on it without invoking GC. In this
work, this threshold value is set to 2.

We simulate LRU and PAW to manage an NVC and
maintain lru list in each cache replacement algorithm at a
DRAM (refer to Fig. 3 for this list). We also keep a table
for an address mapper in an FTL within the DRAM. Our
metrics are an average I/O response time per block for per-
formance, total energy consumption, a flash write count, a
flash erase count, and a cache hit rate. To evaluate LRU
and PAW, we employed a generic application I/O trace [20],
which was collected on a Windows XP platform while sev-
eral well-known Windows applications such as Powerpoint,
Internet Explorer, and Outlook Express are running. Ta-
ble 2 shows the trace information and collection environ-
ment. The request size of writes amounts to 1,288 MB and
the fraction of writes is found to be 73% of the total request
size. We analyzed the access patterns of reads and writes
using a sequentiality threshold and the result is shown in
Table 3. We found that the fraction of random requests is
higher than that of sequential ones among all the requests,
which are found to be 63% and 37%, respectively.

At each block access, PAW determines its access pat-
tern. To determine this, it utilizes a sequentiality thresh-
old. In simulations, we set the sequentiality threshold to 32
blocks (or sectors). Every I/O is requested with a start LBA
and an LBA count, and thus if the count is larger than 32,
all the LBAs belonging to this request are labeled sequential.
We focused on the LBA number because two continuous dif-
ferent requests can be merged into a large sequential one by
applying I/O clustering-based queuing. This method is sim-

Table 2 Collection information and trace information [20].

Collection
environment

OS Microsoft Windows XP
RAM 512 MB
Disk 8 GB

Trace
information

Total execution time 3 hr 30 min
Request count (r/w) 72822 (31208/41614)
Request size (r/w) 1772 MB (484/1288)
Working-set size 955 MB

Table 3 Trace pattern analysis.

Pattern Count (Percentage) Total

Requests
Sequential

Read 26783
(37%)

12375

72822
Write 14408

Random
Read 46039

(63%)
18833

Write 27206

Sectors
Sequential

Read 3218520
(89%)

828812

3631532
Write 2389708

Random
Read 413012

(11%)
163617

Write 249395

ple but effective and thus many researchers are found to em-
ploy it in the literature including [29]. The reason why the
threshold 32 is selected is that Windows XP allocates data
to each file in the unit of a page and 4 pages (i.e., 32 sectors)
are most frequent. Since our trace came from Windows XP,
we thought that 32 sectors can be the boundary of sequential
and non-sequential accesses.

In addition, we adopt I/O clustering to the requests in
the queue of a device driver. As a result of mergence among
sequential requests, if a request continues to grow large, that
is, if an LBA of a currently accessed block is continued to
LBAs of prior accessed blocks, the block will have high
probability of being labeled as sequential. Otherwise, it is
labeled random.

5.2 Simulation Results

We demonstrated how our approach can achieve signifi-
cantly better I/O performance than a traditional one while
enhancing the sequentiality of requests in the queue through
extensive simulations. We also show how much it can re-
duce the number of writes and thus decrease erases of a
flash memory used as an NVC. Varying the NVC size, we
evaluated 4 combinatory pairs of two cache algorithms and
two queuing methods for the generic trace shown in Ta-
ble 2 and 3, where the former consists of LRU and PAW
and the latter consists of simple queuing and I/O cluster-
ing with time-bounded plugging. The default queue size
(MAX REQ QUEUE SIZE in Fig. 3) is set to 5 and the
timeout value to unplug requests in the queue (PLUG-
GING TIMEOUT in Fig. 3) is 60 ms.

5.2.1 Sequentiality

Table 3 shows the analysis of simulation results for the used
trace. This is the case that LRU and a simple queue are
used. We show the number of sequential and random re-
quests, which may be writes or reads. We also show the
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accumulated number of sectors for classified requests. At
the process of each request within the trace, our simulator
checked if a block belonging to each request is sequential or
not. The simulator also determined whether it is a write or
a read access. We notice that sequential writes amounts to
2389708 in terms of sectors, which is about 66% of all the
processed sectors. This means that writes with sequential-
ity should be treated properly for the overall system perfor-
mance. Table 4 shows the analysis of simulation results for
the case that I/O clustering based queuing is used.

As is shown in Tables 3 and 4, after I/O clustering is
applied the number of sequential requests was reduced from
26783 to 26620 while the total request number was shrunk
from 72822 to 72659 by the same amount. This means
that some of the requests were merged into large sequen-
tial ones by I/O clustering and thus the number of sequential
requests was decreased by 163. That is, the PAW algorithm
can strengthen the sequentiality which may reside between
consecutive I/O requests. Therefore, our approach will be
beneficial in boosting the overall disk performance since a
disk has faster processing time with sequential requests due
to much shorter seek time and rotational delay than with
random ones.

Table 5 shows detailed experimental data of a disk for
simple queuing and I/O clustering when LRU is used with a
4 MB NVC. Here, LRU is used to manage an NVC and sim-
ple queuing is used to manage a queue by a queue manager
in the device deriver in Fig. 2. Each column shows our mea-
sured values, which are accumulated values of queue delay,
disk transition time, seek time, transfer time, and rotational
delay while our simulator executes a generic trace. The unit
is ms. Although the sequentiality was improved very little
in Table 3 and 4, the queue delay of the disk was found to
be larger when a simple queue was used. We found that the
queue delay of simple queuing is about 6.3 times larger than
that of I/O clustering-based queuing.

We got the result of improved average I/O response
times due to the shortened queue delay when I/O clustering-
based queuing was used. The reason why the queue delay
for simple queuing was increased in comparison with I/O
clustering-based queuing is that simple queuing has no time
out mechanism and only starts processing all the requests in
the queue when the number of accumulated requests reaches

Table 4 Trace pattern after I/O clustering-based queuing is applied.

Pattern Count Total

Requests
Sequential

Read
26620

12368

72659
Write 14252

Random
Read

46039
18833

Write 27206

Table 5 Comparison of measured disk parameters for simple queuing
and I/O clustering (unit: ms).

qdelay diskdelay seektime xfertime rotational delay

simple queuing 22132781 1100500 266570 23895 234976

I/O clustering 3520006 1034900 265799 23893 234254

the limit. On the other hand, I/O clustering-based queuing
has time-bounded plugging and we described this in Fig. 3
and Sect. 4.2 in the paper. In the mean time, the number of
merged I/O requests is highly related to the time-bounded
plugging. The shorter the time out is, the less I/O clustering
will occur. Thus, deciding the time out value in I/O cluster-
ing is important. In our paper, we set this value to 60 ms.

5.2.2 Average I/O Response Time

Figure 4 shows the average I/O response times of 4 combi-
natory pairs of cache management and queuing method for a
generic trace when the size of an NVC varies. We can notice
that PAW + I/O clustering shows the fastest I/O response
time as the cache size grows among all the pairs. LRU +
I/O clustering has shorter I/O response time than PAW + I/O
clustering till 16 MB of the NVC, but after 16 MB PAW +
I/O clustering has shorter response time than LRU + I/O
clustering by up to 77%. This comes from that when an
NVC is small many random requests are likely to be evicted
from it due to its limited capacity and thus PAW has few
chances to keep more random, that is, likely to be temporal,
blocks in the NVC. As a result, with PAW, evicted random
blocks are supposed to have worse influence on a disk’s be-
haviors due to an irregular mix of sequential and random
accesses than with LRU. Other observations are two-fold.
First is that PAW has wholly better performance than LRU
with the help of an I/O clustering-based queuing method.
Second is that the average I/O response time looks convex
as the cache size increases.

The average I/O response time was found to be propor-
tional to the flash erase count. In case of LRU, if the NVC
size is small there are many requests forwarded to a disk
due to cache misses irrespective of access patterns. How-
ever, since, as the NVC size grows, the NVC absorbs many
reads and writes requests, writes to the NVC increase and
thus the count of erase in the NVC increases. This phe-
nomenon occurred until the NVC size reached 64 MB and
appeared weak beyond this value.

Fig. 4 Average I/O response times of 4 combinatory pairs of cache man-
agement and queuing method for a generic trace.
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5.2.3 Flash Write Count and Erase Count

Figures 5 and 6 show the flash write counts and erase counts
of 4 combinatory pairs of cache management and queuing
method for a generic trace, respectively. As we can notice
in Fig. 5, the write block count of an NVC was improved
by about 86% over LRU when PAW was employed. This is
almost consistent with the 89% percentage of sequential I/O
blocks in Table 3. For this difference between two percent-
ages, since all the block accesses go through the NVC when
LRU is used, but only random blocks and sequential blocks
with temporal locality such as loop data are forwarded to the
NVC with PAW, the fraction of blocks accessed to the NVC
with PAW is found to decrease by 3%.

Basically, flash writes come from both types of read
and write accesses. For reads, when a miss occurs, a flash
write is done. For writes, flash writes are generated when
a cache hit as well as a cache miss occur. When a cache
hit occurs, the target page should be invalidated and its data
should be moved (written) to a new page. When a cache
miss occurs, data is written to a new page only. Thus, in case
that a cache hit occurs from a write access, double pages

Fig. 5 Flash write counts of 4 combinatory pairs of cache management
and queuing method for a generic trace.

Fig. 6 Flash erase counts of 4 combinatory pairs of cache management
and queuing method for a generic trace.

are consumed in comparison with a cache miss from a read
access and more erases will be done.

From our observations, as the NVC size grows, cache
hits from write accesses increased. Thus, erases from cache
hits increased very much as is shown in Fig. 7. In Fig. 7,
when the NVC size grows, the flash erase count from cache
misses also increased. This is because as the NVC grows
it absorbs read and write blocks, which are random. Due
to these occupied blocks, most sequential writes will have
a few chances to stay longer in the NVC relatively. Thus,
many write accesses will be evicted from the NVC, caus-
ing GCs only. Consequently, although the flash write count
varies little, the flash erase count increased.

In Fig. 5 and 6, the increment of writes to a flash mem-
ory is found to be smaller than that of erases in a flash as the
NVC size increases with LRU and PAW. The reason is that,
as the NVC grows writes to a flash memory can be ascribed
to write requests coming from a trace rather than writes to
an NVC due to cache misses with both LRU and PAW. PAW
has relatively fewer writes to the NVC due to directing most
of sequential requests including many writes to the disk over
LRU and has more chances of avoiding increase of the erase
count of a flash memory. Thus, we notice that erases in a
flash memory with PAW are reduced by 84% to 100% (this
means there being no GCs with PAW at 256 MB) over LRU
in Fig. 6.

For PAW, a peak erase count, which resulted in the
worst average I/O response time, appeared at about 16 MB,
where the NVC size is rather small than that for LRU. This
comes from that PAW enables to store a larger number of
random data to the NVC than LRU and evict sequential data
in the NVC better.

5.2.4 Energy Consumption

Figure 8 shows the total energy consumption of the storage
system for 4 combinatory pairs of cache management and
queuing method for a generic trace. We found that PAW-
combined approaches have good energy saving over LRU-
combined ones. This is because LRU-combined approaches

Fig. 7 Flash erase counts at NVC hit and miss for write accesses.
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Fig. 8 Energy consumption of 4 combinatory pairs of cache management
and queuing method for a generic trace.

Fig. 9 Cache hit rates of 4 combinatory pairs of cache management and
queuing method for a generic trace.

are affected by a mix of sequential and random data, evict-
ing many I/O blocks to a disk and spinning it on and on. In
addition, PAW-combined approaches have only sequential
requests directed to a disk and random data maintained in
a flash memory, taking less spinning time and reduced seek
time of the disk. At 256 MB in Fig. 8, the energy consump-
tion of LRU + I/O clustering appears lowest. Our obser-
vation from experimental data is that LRU + I/O clustering
saves much energy by storing data to an NVC and PAW-
combined approaches lose some chances of energy saving
since PAW still forwards many sequential requests to a disk,
keeping it spinning in an active mode and thus consuming a
lot total energy although the energy consumption of an NVC
is small in comparison with LRU.

5.2.5 Cache Hit Rate

In Fig. 9, PAW has at least 2.8 times higher cache hit rates
than LRU regardless of queuing methods. This is because
PAW directs random data, which has high probability to
have temporal locality, to an NVC and sequential data to a
disk, and it can maintain more random data within the NVC
as the NVC grows. The reason why I/O clustering-based

queuing is ineffective to raising the NVC hit rate is ascribed
to the fact that a cache hit rate is only affected by the volume
of random data forwarded to an NVC and its size. In other
words, the requests merged by I/O clustering are likely to
have sequentiality and most of them will be transferred to
a disk without any accesses to the NVC with PAW. Conse-
quently, the hit rate of the NVC will hardly be influenced by
I/O clustering as shown in Fig. 9.

6. Related Work

There have been a lot of researches on enhancing the over-
all I/O performance in disk-based storage systems. Rep-
resentatives are cache management and queue scheduling
techniques. Various caching algorithms in a lot of litera-
ture have been studied until now. For example, [2] tried to
optimize the system performance by renovating LRU at the
page cache level. [1], [6]–[9] investigated a write cache at
the level of a device controller while recent work such as
[13], [14], [20], [23] studied the usage of a flash memory as
an NVC in a disk-based storage system.

In disk array-based servers using data striping mech-
anisms such as RAID 5, since updates of data as well as
parities have significant influence on the overall I/O per-
formance, many techniques employing an NVC have been
studied [1], [5]–[8]. These works mainly focused on devel-
oping destage algorithms, which take the role of evicting the
least valuable dirty blocks from the NVC effectively if there
is no free space in the NVC when a new write arrives at a
storage controller.

In mobile systems, studies of using an NVC as a write
cache have appeared with the purpose of reducing write la-
tency [9]. Recently, adoption of a NAND flash memory as
a write cache has been observed frequently. Samsung and
Microsoft developed a hybrid hard disk drive technology,
which combines a hard disk with a NAND flash memory
as an NVC, to boost the performance, reduce the power
consumption, and increase the reliability of mobile comput-
ers [10]–[12]. Bisson et al. tried to improve a hybrid hard
disk drive technology with several supports from I/O sub-
systems including I/O redirection techniques and polished
NVC techniques in terms of performance and energy [13],
[14].

At a device controller level, queue scheduling tech-
niques have been researched a lot such as first-come-first-
serve (FCFS), shortest seek time first (SSTF), SCAN, and
cyclic SCAN (CSCAN) [24], but there have been scarce
work on combining a cache algorithm and a queuing tech-
nique. [1] proposed WOW which is a write request ordering
technique a non-volatile cache, combining a cache eviction
policy and a queue scheduling method, aiming at achiev-
ing temporal locality and spatial locality together synergis-
tically. However, WOW does not consider the actual I/O la-
tency of an NVC since it assumes to employ a volatile DDR
memory as an NVC.

Unlike prior work, ours focuses on combining a cache
algorithm and a queue scheduling method at two levels of a
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disk-based storage system, which are a device driver of an
OS and a device controller of a storage device, while con-
sidering the real I/O features of a NAND flash memory for
an NVC. Our work is designed to face the characteristics of
mobile workload patterns and aims at enhancing the overall
I/O performance from the synergistic effect of combining
a pattern-aware write cache policy and an I/O clustering-
based queuing method to strengthen the sequentiality.

7. Conclusions

We proposed a performance-enhanced write cache policy
for a NAND flash memory in disk-based mobile storage
systems. The proposed policy redirects non-sequential re-
quests to an NVC and sequential ones to a disk in order to
reduce the overall system I/O latency. To strengthen the se-
quential operations in a disk we adopted an I/O clustering-
based queue scheduling algorithm. To evaluate the pro-
posed approach, we have built a practical hard disk simu-
lator with an NVC of a NAND flash memory. Extensive
simulations showed that our policy significantly improves
the overall system I/O performance by reducing the over-
head from a non-volatile cache considerably over a tradi-
tional one, achieving a high efficiency in energy consump-
tion.

As future work, we plan to study comprehensive
integrated I/O performance performance-optimizing tech-
niques. To the best of our knowledge, there has been no
investigation of the overall system I/O performance, which
considers a page cache in a file system and a request queue
in a device driver, and a cache and a queue in a device
controller concurrently. We also plan to investigate energy-
optimizing techniques for a disk-based mobile storage de-
vice with an NVC.
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