
A Worst Case Timing Analysis Technique for Multiple-Issue Machines
�

Sung-Soo Lim
Dept. of Computer Engineering

Seoul National University
Seoul, Korea, 151-742

Jung Hee Han
Dept. of Electrical Engineering and Computer Science

University of Michigan, 1301 Beal Ave.
Ann Arbor, MI 48109-2122

Jihong Kim
�

Dept. of Computer Science
Seoul National University

Seoul, Korea, 151-742

Sang Lyul Min
Dept. of Computer Engineering

Seoul National University
Seoul, Korea, 151-742

Abstract

We propose a worst case timing analysis technique for
in-order, multiple-issue machines. In the proposed tech-
nique, timing information for each program construct is
represented by a directed acyclic graph (DAG) that shows
dependences among instructions in the program construct.
From this information, we derive for each pair of instruc-
tions the distance bounds between their issue times. Using
these distance bounds, we identify the sets of instructions
that can be issued at the same time. Deciding such in-
structions is an essential task in reasoning about the timing
behavior of multiple-issue machines. In order to reduce
the complexity of analysis, the distance bounds are pro-
gressively refined through a hierarchical analysis over the
program syntax tree in a bottom-up fashion. Our experi-
mental results show that the proposed technique can predict
the worst case execution times for in-order, multiple-issue
machines as accurately as ones for simpler RISC processors.

1. Introduction

In building a real-time system, the worst case execution
times (WCETs) of tasks in the system should be predicted in
advance since they are required in schedulability analysis for
the system. Results of the WCET prediction should be both
safe (i.e., the predicted WCET should not be smaller than the
real WCET) and accurate (i.e., the difference between the�

This work was supported in part by KOSEF under Grant 97-01-02-05-
01-3.�

Jihong Kim was supported in part by Equipment Award for New Fac-
ulty from the College of Natural Sciences, Seoul National University.

predicted WCET and the real WCET should be small). Un-
safe prediction causes unexpected deadline misses of tasks
that may result in catastrophic consequences. On the other
hand, inaccurate prediction leads to a pessimistic schedu-
lability analysis that results in underutilization of system
resources.

To obtain accurate prediction for modern high-
performance processors, the timing effect of advanced archi-
tectural features should be taken into account. For example,
several groups including Zhang et al.[15], Lim et al.[11], Li
et al.[10], and Healy et al.[4] had investigated the prediction
techniques for pipelined processors. However, most of ex-
isting techniques assume that processors can issue at most
one instruction at each cycle, thus cannot produce accurate
analysis results for modern multiple-issue machines such as
superscalar processors.

In this paper, we propose a worst case timing prediction
technique which is applicable to multiple-issue machines. In
reasoning about the timing behavior of multiple-issue ma-
chines, it is essential to identify the instructions that can be
issued at the same time. In the proposed technique, the tim-
ing information for each program construct is represented
by a directed acyclic graph called an instruction dependence
graph (IDG). The IDG shows dependences among instruc-
tions in a program. From the IDG, the distance bounds
between the issue times of every pair of instructions are de-
rived. Using these distance bounds, we can identify the sets
of instructions that can be issued simultaneously. Deriving
the distance bounds and identifying simultaneously-issued
instructions are two key steps in predicting the WCET of a
program on multiple-issue machines.

To reduce the complexity of analysis, our approach is
based on an existing hierarchical timing analysis frame-
work called the extended timing schema (ETS) [11]. In this
framework, the distance bounds are progressively refined

over the program syntax tree in a bottom-up fashion. As
the distance bounds of surrounding blocks are known dur-
ing the hierarchical refinements, some adjacent instructions
can be merged into a single node of the IDG if they have a
constant distance. This merging step reduces the number of
nodes maintained by the IDG, thus reducing the complexity
of analysis.

The proposed technique is described and validated using
a simple in-order, multiple-issue machine model. Since the
primary purpose of the work described in this paper is to
understand whether the multiple-issue feature can be accu-
rately analyzed to predict the WCETs of programs, we sig-
nificantly simplify a machine model except for the multiple-
issue capability. (This model is described in detail in Sec-
tion 3.) For the validation purpose, we build a timing tool
based on the proposed technique using the multiple-issue
machine model, and compare the WCET analysis results
from the tool with measurements obtained using simulation.
The results show that our technique can predict the WCETs
for in-order, multiple-issue machines as accurately as ones
for simple RISC processors based on the similar hierarchical
technique [11].

The rest of this paper is organized as follows. In Sec-
tion 2, we explain the ETS that forms the basis of the tech-
nique proposed in this paper. In Section 3, we describe our
multiple-issue machine model used in this paper. An IDG is
formally defined as well in this section. Section 4 presents
the key algorithms to derive the distance bounds and to
identify the instructions that can be issued simultaneously.
In Section 5,we explain how to augment the original ETS
framework for the multiple-issue machine model using the
distance bounds computed. Experimental results follow in
Section 6, and we conclude with future works in Section 7.

2. Extended Timing Schema

Before we discuss the proposed technique, we first de-
scribe the extended timing schema (ETS) on which our al-
gorithms are based. The original timing schema is a set of
formulas for reasoning about the timing behavior of vari-
ous language constructs [14]. The ETS extends the timing
schema to reflect timing properties of modern architectural
features such as pipelining and caching in two aspects: (1)
redefinition of the timing information for each program con-
struct and (2) redefinition of the timing formulas using newly
introduced operations, concatenation (�) and pruning [11].

In the ETS, each program construct is associated with a
Worst Case Timing Abstract (WCTA) which is a data struc-
ture containing information needed in hierarchical timing
analysis. A program construct may have more than one
execution path as an if statement and the WCETs of these
execution paths differ significantly depending on preceding
program constructs. Therefore, the worst case execution

Extended Timing Schema

S: S1 ; S2 ���	��

������� 1
���������� 2

S: if (exp) then S1 else S2 ������
������������ �
���������� 1
	
���	������� �
�� � ����� 2
	

S: while (exp) S1 ���	��
����	���
 ! � 1 �	������� �
���������� 1
	
�
����"������� �

S: f(exp1 , #$#$# , exp %) ���	��
���������� � 1
�� � #�#$# � � ���	�&� � %
�� � ����'(�	
	
)+*-,/.

is the WCTA of a statement S. The 0 operation between two WCTAs,
)

1

and
)

2 , is defined as
)

1 0) 2 132(4 1 0 4 2 5 4 1 6) 1 7�4 2 6) 2 8 . The 0 �
operation is the 0 operation followed by the pruning operation, and 9 is the upper

bound on the number of the loop iterations.

Table 1. Timing formulas of the extended tim-
ing schema.

path of the program construct cannot be determined by an-
alyzing the program construct without considering the pre-
ceding program constructs. For this reason, the WCTA of
a program construct keeps timing information of every exe-
cution path in the program construct that might be the worst
case execution path. Each execution path of a program
construct forms a Path Abstraction (PA) that contains the
timing-related information of the execution path. The PA of
an execution path encodes the factors that affect the WCET
of the execution path. These factors may include the in-
formation on the pipelined execution and cache states. The
encoding is done in such a way that allows for refinement of
the execution path’s WCET when the detailed information
about the preceding execution paths becomes available. For
example, in the case of pipelined execution analysis, the PA
is about the use of pipeline stages in the associated execution
path. In [11], the PA structure is defined using reservation
tables which represent the usage of pipeline stages. This
information allows for the refinement of the path’s execu-
tion time once the pipeline usage information of preceding
execution paths becomes available.

Two new operations, concatenation (�) and pruning, are
introduced to form the timing formulas in the ETS. The �
operation between two PAs models the execution of one path
followed by that of another path and yields the PA of the
combined path. During this operation, the execution times of
both paths are revised using each other’s timing information
encoded in their PAs. The pruning operation is performed
on a set of PAs for a program construct and prunes the PAs
whose associated execution paths cannot be the worst case
execution path of the program construct. Table 1 shows
the timing formulas of the extended timing schema. The
timing formula for S: S1; S2 first enumerates all the possible
execution paths within S. The pruning operation after the
enumeration prunes a subset of the resulting execution paths
that cannot be the worst case execution path of the sequential
statement. Similarly, the timing formula for an if statement
first enumerates all the execution paths in the then path and

those in the else path, and the execution paths that cannot be
the worst case execution path of the if statement are pruned.
The timing formula for a loop statement with a loop bound:

models a loop unrolled
:

times. This approach is exact
but is computationally intractable for a large

:
. In [11],

Lim et al. give an efficient approximate loop timing analysis
method using a maximum cycle mean algorithm due to Karp
[9].

In summary, in order to perform timing analysis within
the ETS framework, the following three components should
be decided: (1) determination of the PA structure, (2) def-
inition of the � operation on PAs, and (3) definition of the
pruning condition. Once these three components are deter-
mined, the worst case timing analysis of a program can be
performed mechanically by traversing the program’s syntax
tree in a bottom-up fashion and applying the timing formulas
of the ETS.

3. Multiple-Issue Machine Model and Program
Representation

3.1. Multiple-Issue Machine Model

Throughout this paper, we use a simple multiple-issue
machine model with the following assumptions:

; Instructions are issued in the order shown in a program
(in-order issue). However, each instruction can com-
plete its execution regardless of other instructions’
completion (out-of-order completion).; The delayed branch scheme is used. For a branch in-
struction, one delay slot is assumed. This assumption
is to ignore the effect of the branch prediction results
on the execution time. (A worst case timing analy-
sis under branch prediction is one of our main future
research topics.); All memory accesses are cache hits. This assumption
is to ignore the effect of cache misses on the execu-
tion time. (Since our approach does not make any
assumption on the cache system, previously proposed
techniques on the cache analysis [1, 11, 10] can easily
be integrated with our approach.); Processor can issue up to < instructions simultane-
ously, where < is provided as a parameter to our anal-
ysis. < is equal to or smaller than the number of
functional units in the processor (i.e., <>= 9 in our
processor model).

We further assume that our machine model has nine func-
tional units as shown in Figure 1 and its instruction set is
similar to that used in MIPS R3000/R3010 [8]. In Figure 1,

Float
ALU MultiplyConvert Divide

Float Float Float

Load/StoreALU Multiply Divide Branch

1 cycle 1 cycle/1 delay 4 cycles 12 cycles 1 cycle/1 delay

19 cycles4 cycles2 cycles2 cycles

Figure 1. Functional units of target processor
model.

each functional unit is shown with the latency of operations
performed by the corresponding functional unit. Both the
Load/Store and Branch units are assumed to have one delay
slot.

3.2. Program Representation

In multiple-issue processors, the amount of exploitable
parallelism is restricted by dependences among instructions.
Such dependences include structural dependences (i.e., re-
source conflicts) and data dependences [7]1. Structural de-
pendences are caused by multiple instructions competing
for the same functional unit. On the other hand, data depen-
dences are caused by multiple instructions that use the same
register or memory location. In this paper, we introduce
another type of dependences, order dependences, that are
used to model that instructions are issued in-order in our
machine model.

To represent dependences among instructions, we use a
directed acyclic graph (DAG), which we call an instruc-
tion dependence graph (IDG). The IDG representation of a
program is similar to popular DAG representation of a pro-
gram used in compiler research [3, 5]. In an IDG, a node
can represent either a single instruction or a sequence of
instructions. In the proposed technique, each node of an
IDG initially corresponds to a single instruction in a basic
block. Through a hierarchical refinement process of our
timing analysis technique, several nodes are merged into
a single node which represents more than one instruction.
Each edge ? = (@BA$C) of an IDG indicates that there is at least
one non-redundant dependence between the instruction(s)
represented by the node @ and the instruction(s) represented
by the node C . (The exact definition of redundant depen-
dences is described below.) Each edge ? = (@DA�C) is associated
with a weight E�F (or E�G 7 H) that represents the minimum cycles

1There is another type of dependences called control dependences. Con-
trol dependences are caused by branch instructions. Since we assume the
delayed branch scheme in which a compiler resolves control dependences,
we do not consider control dependences in our machine model.

2

1
1

22

2

1

1

4

1

2

1

2

2

4

1

1

1

2

(c)

1

4

5

2

7

3

6

(b)

1

2

3

4

5

6

7

data dependence

structural dependence

order dependence

1

7

6

5

4

3

2

sll $25, $12, 0x2 ; $25 <- $12 << 2
lui $1, 0x1000 ; $1 <- 0x1000
addu $1, $1, $25 ; $1 <- $1 + $25

lwc1 $f18, 96($1) ; $f18 <- mem[$1 + 96]

add.s $f18, $f18, $f18 ; $f18 <- $f18 + $f18

add.s $f18, $f18, $f16 ; $f18 <- $f18 + $f16

mul.s $f16, $f18, $f18 ; $f16 <- $f18 * $f18

(a)

Figure 2. An example program representa-
tion.

required between the issues of the first instructions of the
nodes @ and C . (For the description convenience, we use the
issue of a node to mean the issue of the first instruction of a
node.)

As an example, consider the basic block shown in Fig-
ure 2(a). The basic block contains a sequence of instructions
based on the MIPS R3000/R3010 instruction set. Among the
instructions, sll, lui, and addu use the ALU functional
unit, lwc1 and add.s use the Float ALU functional unit,
and mul.s uses the Float Multiply functional unit. The
graph shown in Figure 2(b) represents all the dependences
among the instructions including redundant dependences.
In the dependence graph, since the weights for order depen-
dences are all 0, they are not shown explicitly in the figure.
Formally, we define that a dependence ? = (IJA(K) between
nodes I and K is redundant if one of the following two
conditions is satisfied:

(1) there exists another dependence ?�L = (IJA(K) between
the same nodes I and K and E FNM�O E F (when there
are more than one dependence with the same weight
between the two nodes, we choose one arbitrarily
among them),

(2) there exists a set of dependences, P = Q
? 0 A(? 1 A�R�R�RSA(?�T/U ,
such that

(i) ? 0 V W IJA(@ 0 X AB?�T V W @�T�Y 1 AZK X A and ? H VW @ H Y 1 AZ@ H X for 1 =[C]_^ and

(ii)

T`
G 1 0

E F ! O E F .
For example, because of rule (2), both of the two depen-
dences between nodes 4 and 6 in Figure 2(b) are redundant.
Figure 2(c) shows the corresponding IDG with the redun-
dant dependences eliminated. In an IDG, since all redundant
dependences were eliminated, there can be at most one edge
between any pair of nodes.

An IDG succinctly represents the timing-related informa-
tion for a sequence of instructions. However, an IDG alone
is generally not sufficient to predict the WCETs. While
an IDG contains the complete information on the depen-
dence relationship between the instructions represented by
the IDG, more information from the surrounding blocks is
necessary to predict the worst case issue patterns that result
in the WCETs. For example, if the first instruction of the se-
quence requires the Float Divide unit, its issue time can vary
significantly depending on whether the Float Divide unit is
used by the preceding instruction. This type of variation on
the issue times makes it difficult to identify the instructions
that can be issued simultaneously. To efficiently manage
these difficulties, we divide IDG nodes into two types. For
the first type of a node (called a resolved node), each in-
struction represented by the node knows which instructions
in the same IDG use its functional unit and operands. For
the second type of a node (called an unresolved node), at
least one instruction in the node cannot tell when its func-
tional unit or operands may be used, simply by examining
the preceding instructions in the same IDG. In our proposed
technique, for unresolved nodes, we assume that their ex-
ecutions may be delayed by the maximum possible delay
for safe prediction. For accurate prediction, the maximum
delay value is reduced as more information from surround-
ing blocks are known through the hierarchical refinement
process. Formally, we define the resolved and unresolved
nodes as follows:

Definition 1 A node is said to use a register if the register
is one of the source register(s) of an instruction in the node.
Let use(i) for a node @ be the set of registers used by the
instruction(s) in the node @ .
Definition 2 A node is said to define a register if the register
is the destination register of an instruction in the node. Let
def(i) for a node @ be the set of registers defined by the
instruction(s) in the node @ .
Definition 3 A node is said to occupy a functional unit if an
instruction in the node utilizes the functional unit during its
execution. Let occupy(i) for a node @ be the set of functional
units occupied by the instruction(s) in the node @ .
Definition 4 A node @ is said to be resolved if all the reg-
isters in use(i) and def(i) are defined by preceding nodes in

2

4

1

2

1

1

mul.s $f16,

1

 $12

lwc1 $f18,

sll $25, $12

3 addu $1, $1, $25

7

 96($1)

add.s $f18, $f18, $f16

add.s $f18, $f18, $f18

 $f18, $f18

6

resolved node

unresolved node

order dependence

structural dependence

data dependence

unresolved dependence

1

2

3

4

5

6

7

lui , 0x1000
 , 0x2

4

5

Figure 3. An IDG with resolved/unresolved
nodes.

the same IDG and all the functional units in occupy(i) are
occupied by preceding nodes in the same IDG. Otherwise,
the node is said to be unresolved. If a node is resolved, we
say that all the dependences for the node are resolved. If
a node is unresolved, we say that the node has unresolved
dependences.

Figure 3 shows the same IDG used in Figure 2 with the re-
solved/unresolved information augmented. As an example
of the unresolved nodes, consider node 4 in the IDG. We
can note that acb
? W 4 X = Q $1 U , d/?�e W 4 X = Q $f18 U , andf�gSg ah^ji W 4 X = Q Float ALU U according to Definitions 1, 2,
and 3. Among the elements in acb�? W 4 X and d/?�e W 4 X , register
$f18 is not defined by nodes 1, 2, and 3. The functional
unit Float ALU in f�gSg a/^ki W 4 X is also not occupied by any of
the preceding three nodes 1, 2, and 3. Therefore, node 4 is
an unresolved node which has unresolved dependences for
register $f18 and the Float ALU functional unit. The dot-
ted thick edge from outside of the IDG to node 4 in Figure 3
represents the unresolved dependence. Similarly, nodes 1,
2, and 5 are unresolved nodes as well due to unresolved
dependences for registers or functional units.

4. Distance Bounds between Instructions

In this section, we first describe an algorithm for deriving
the distance bounds on the issue times of each pair of instruc-
tions in a given IDG. (We call this a bounding step.) These
distance bounds are used to identify the instructions that can
be simultaneously issued. (We call this a multiple issuing
step.) Once the distance bounds are computed for the IDG
and the instructions are identified for multiple issues, the
IDG can be simplified. (we call this a merging step.) For
example, if two adjacent instructions have a constant issue
distance, without loss of information, we can combine these
two instructions into a single IDG node. The merging step
reduces the complexity of analysis by reducing the number
of nodes that need to be kept in an IDG.

4.1. Definitions and Terminology

We use the following terms and notations in explaining
the algorithms:; We use the term resources to refer to both registers

and functional units. Let l V Q
m 1 AZm 2 A�R�R�R�AZm 9on U be
the set of resources in a processor model where

:+p
is the total number of resources.

:+p
is the sum of

the number of registers and the number of functional
units. (In our processor model,

:�p
is 73, consisting

of 64 registers and 9 functional units.); Each resource m�G is associated with the maximum la-
tency q
G , which is defined to be the maximum duration
for which an instruction may occupy the resource m
G .
If m
G is a functional unit, q
G is the maximum instruc-
tion latency among all the instructions that occupy m�G
during their executions. Let q�r�sut be the maximumq
G for all the functional units. If an m
G is a register, q
G
is defined as q r�sut . For a given processor, q G ’s can be
obtained from the processor manual. In our proces-
sor model, q r�sut is 19 cycles which is the latency of
instructions for the Float Divide functional unit.; For an unresolved node @ in an IDG, let aJvwm�?�b fyx Ih?
d W @ X
be the set of resources that are not resolved in node@ . The azvcm�?�b fyx I/?�d W @ X set consists of the registers and
the functional units that are not resolved in node @ .
The unresolved registers are the registers in awb
? W @ X
or d/?�e W @ X but not in d/?�e W C X for C_\{@ while the un-
resolved functional units are the functional units inf�gSg a/^ki W @ X but not in f�gSg ah^ji W C X for C]\|@ .; For each node @ , }�~/� x ~/�N?
v g i v f d�? W @ X is the time
duration from the issue of the first instruction of node@ to the completion of the executions of all the in-
structions in the node @ while }�@$v x ~h�N?
v g i v f d/? W @ X
is the time duration from the issue of the first in-
struction of node @ to the issue of the last instruction
of node @ . ��~�� x ~h�N?
v g i v f d/? W @ X is used to assign
the maximum possible weight of an edge from node@ to a succeeding node and }�@$v x ~h�N?
v g i v f d/? W @ X
is to assign the minimum possible weight of an
edge from node @ to a succeeding node. For each
node @ , }3~/� x ~h�N?�v g i azvcm�?�b fyx I/?�d W @ X is the maxi-
mum of the maximum latencies of the resources
in azvcm�?�b fyx Ih?�d W @ X . ��~/� x ~h�N?
v g i aJvcm�?�b fyx Ih?�d W @ X is
used to assign the maximum possible weight of an
edge from a preceding node to node @ .

4.2. Bounding Step

In order to represent the variation of instruction issue
times, we derive the distance bounds between the issue times

3

(b)

21

3

(a)

3

0

1

2

3

5

(c)

2

1

max�D�S� %�� ���&�$� �Z���Z� 2
 �	� �

Figure 4. A bounding step example.

for each pair of nodes. As an example, consider the IDG
shown in Figure 4(a) where nodes 1 and 2 have unresolved
dependences. In order to compute the distance bounds for
each pair of nodes, there are three combinations to consider:
the distance bounds for nodes 1 and 2, nodes 2 and 3 and
nodes 1 and 3. The lower bound for nodes 1 and 2 occurs
when node 2 is issued at the same time as node 1 as shown
in Figure 4(b). Such a scenario is possible because node
2 has only an order dependence with node 1. Thus, the
lower bound for nodes 1 and 2 is 0. On the other hand,
the upper bound occurs when the issue of node 2 is delayed
as much as possible from the issue of node 1. Such a sce-
nario is shown in Figure 4(c). In the figure, the black node
represents the node that immediately precedes the current
program construct. In this scenario, the black node is as-
sumed to have only an order dependence with node 1, so
it can be issued at the same time as node 1. Furthermore,
we assume that the black node occupies the unresolved re-
sources of node 2 making the unresolved dependences of
node 2 be forced to be resolved. To give the upper bound,
this unresolved dependence should have the largest possible
latency, maxs 6����y� F����(���SF�� * 2 . W q�s X , where ~ is an element of the set

of unresolved resources for node 2.
Next, consider the bounds on the distance between nodes

2 and 3. This distance is affected by three weights, E 2 7 3,E 1 7 3, and E 1 7 2. The lower bound can be obviously E 2 7 3 (=
3), but it can be tightened more. For instance, if the upper
bound of the distance between nodes 1 and 2 is less than
(E 1 7 3 � E 2 7 3)(= 2), the distance between nodes 2 and 3 is
guaranteed to be larger than E 2 7 3 (= 3). Therefore, the lower
bound is the larger of (1) E 2 7 3 and (2) the difference betweenE 1 7 3 and the upper bound of the distance between nodes 1
and 2. Similarly, the upper bound is the larger of (1) E 2 7 3 and
(2) the difference between E 1 7 3 and the lower bound of the
distance between nodes 1 and 2. These comparisons require
the distance bounds between nodes 1 and 2 to be calculated
in advance.

..

.

.

.

.

. .
5

4

631

2 3 4

1

2

3

4

1
2

(b)(a)

1

2

3

4

Figure 5. The bounding order.

Finally, consider the distance bounds for nodes 1 and 3.
The lower bound can be obviously E 1 7 3 (= 5). However,
if the distance between nodes 1 and 2 is guaranteed to be
larger than (E 1 7 3 � E 2 7 3)(= 2), the distance between nodes 1
and 3 should be computed by summing the distance between
nodes 1 and 2 and E 2 7 3(= 3). Therefore, the lower bound for
nodes 1 and 3 is the larger of (1) E 1 7 3 and (2) the sum of the
lower bound of the distance between nodes 1 and 2 and E 2 7 3.
Similarly, the upper bound on the distance between nodes 1
and 3 is the larger of (1) E 1 7 3 and (2) the sum of the upper
bound of the distance between nodes 1 and 2 and E 2 7 3.

In calculating the distance bounds, some distance bounds
must be computed earlier than others. For example, deriving
the distance bounds for nodes 2 and 3 requires the distance
bounds for nodes 1 and 2 to be available in advance. Sim-
ilarly, deriving the distance bounds for nodes 1 and 3 also
requires the distance bounds for nodes 1 and 2 to be avail-
able in advance. This implies that deriving distance bounds
should be performed in the order shown in Figure 5. Fig-
ure 5(a) shows the order of calculating distance bounds with
a sample IDG. The distance bounds for nodes 1 and 2 are cal-
culated first followed by the calculation of distance bounds
for nodes 2 and 3, nodes 1 and 3, and so on. Figure 5(b)
shows the order of calculating distance bounds using a ta-
ble whose cell represents the distance bounds between the
row-numbered node and the column-numbered node.

Generalizing the above example, we can compute the
distance bounds between two nodes as follows. Let � r�G �G 7 H
and � r�sutG 7 H be the minimum (required) and maximum (pos-
sible) distances between the issue times of nodes @ and C (i\ j), respectively. As shown in Figure 5, the calculation
order is: [� r�G �1 7 2 A(� r�sSt1 7 2], [� r�G �2 7 3 A(� r�sSt2 7 3], [� r�G �1 7 3 A(� r�sSt1 7 3],
[� r�G �3 7 4 A(� r�sSt3 7 4], [� r�G �2 7 4 AB� r�sut2 7 4], [� r�G �1 7 4 A(� r�sut1 7 4], R�R�R . In
calculating [� r�G �G 7 H A(� r�sutG 7 H], we consider the nodes that have
dependences with node C in the IDG. We classify such nodes
into the following three classes according to their positions
in the IDG as shown in Figure 6: (1) the nodes preceding
node @ (i.e., nodes ^ 1 A�^ 2 A�R�R�RSA&^Jr in Figure 6(b)), (2) node@ (Figure 6(c)), and (3) the nodes succeeding node @ (i.e.,

m

nq

q

q1

2

p
2

p
1

p

p
2

p
1

m

qn

q2

q1

�p

(a) (b) (c) (d)

� �

� �

�

�

�

Figure 6. Three classes of nodes having de-
pendences with node C .

nodes 1 AB 2 A�R�R�RSA(� in Figure 6(d)). In order to calculate� r�G �G 7 H , three candidate lower bound values from the three
class are computed separately, and then the largest of three
candidate values is chosen to be � r�G �G 7 H . For the first class,
we calculate the differences between EuT � 7 H and � r�sutT � 7 G where
1 =¡�¢=¡} . EuT � 7 H is given in the original IDG and � r�sutT � 7 G
is calculated at an earlier stage. The largest of these dif-
ferences is the candidate lower bound value from the first
class. For the second class, E�G 7 H is the candidate value. For
the last class, we calculate the sums of � r�G �G 7 £$¤ and E £$¤�7 H where
1 =>i¥=|v . The largest of these sums is the candidate value
from the third class.

The maximum distance � r�sutG 7 H between the issue times
of nodes @ and C can be obtained when the issue of nodeC is maximally delayed relative to node @ . For safe bound-
ing on the maximum distance, we introduce additional edges
(called max edges) between node 1 and the unresolved nodes
of the IDG. The max edges between node 1 and unresolved
node @ has a weight of }3~/� x ~h�N?�v g i azvcm�?�b fyx Ih?�d W @ X , thus
effectively models the maximum possible delay between
a preceding (but yet unknown) node and unresolved node@ . Figure 7(a) shows the IDG of Figure 3 with the max
edges added. Note that the weights are all q
r�sut since
the unresolved nodes have registers as their unresolved re-
sources. Using the modified IDG with the max edges, the� r�sutG 7 H calculation proceeds similarly to the � r�G �G 7 H calcu-
lation. (In order to distinguish the modified IDG and the
original IDG, we use E�LG 7 H to indicate a weight in the mod-
ified IDG. E�LG 7 H is defined as follows: E�LG 7 H V E G 7 H if @¥¦V 1,E LG 7 H V }�~�� x ~h�N?
v g i azvcm�?�b fyx I/?�d W C X if node C is an unre-
solved node and @ V 1, and E�G 7 H V 0 if there is no edge
between nodes @ and C in the IDG.) Three candidate up-
per bound values from the three classes are computed and
the largest value is selected as � r�sutG 7 H . For the first class,
we calculate the differences between E�LT � 7 H and � r�G �T � 7 G where
1 =¡�|=�} . The largest of these differences is the candi-
date value from the first class. From the second class, we
take E�LG 7 H as in the � r�G �G 7 H calculation. For the third class, we

22

1

1

1

4

1

2 2

1

4

2

1

4

1

1

2

3

4

(a)

1

1

2

2

1

2

3

4

5

6

7

[1, 19]

[1, 1]

[1, 17]

[2, 16]

[0, 0]

1

2

3

4

5

6

7

6

7[4, 4]

5

(b) (c)

M1

M2

M3

M4

§Z¨ � �
§�¨ � � § ¨ � �

Figure 7. IDG modifications for � r�sutG 7 H calcula-
tion and merging operation.

calculate the sums of � r�sutG 7 £ ¤ and E�L£ ¤ 7 H where 1 =©i|=ªv .
The largest of the sums is the candidate from the last class.
The � r�G �G 7 H and � r�sutG 7 H calculations can be summarized by
the following equations:« ¨ ! %!­¬ ® 1 max

*
max

1 ¯ � ¯ ¨ *�° � � ¬ ® Y « ¨ � �� � ¬ ! . 7 ° !­¬ ® 7 max
1 ¯�¤u¯ % *-« ¨ ! %!­¬ ± ¤³² ° ± ¤ ¬ ® .-. (1)« ¨ � �!­¬ ® 1 max

*
max

1 ¯ � ¯ ¨ *�° M� � ¬ ® Y « ¨ ! %� � ¬ ! . 7 ° M!-¬ ® 7 max
1 ¯�¤D¯ % *-« ¨ � �!­¬ ± ¤]² ° M ± ¤ ¬ ® .-.�´ (2)

Each equation in the above has three elements in the outer-
most max operation and each element corresponds to each
class of nodes.

4.3. Multiple Issuing and Merging Steps

In the multiple issuing step, we identify the instructions
that are guaranteed to be issued simultaneously, based on
the distance bounds computed in the previous section, and
then refine the distance bounds of the IDG to reflect the
effect of identified instructions to the IDG representation. In
principle, two nodes whose distance bounds are [0, 0] can be
issued simultaneously. If a series of nodes have the distance
bounds of [0, 0], these nodes can be potentially issued at
the same time. However, the number of simultaneously
issued instructions cannot be greater than the multiple-issue
limit of a target processor. For example, in our machine
model where the maximum of < instructions can be issued
simultaneously, consider a series of nodes ^"A&^¶µ 1 A�R�R�RuA&^¶µ·
such that [� r�G �T ² G 7 T ² G ² 1 A(� r�sutT ² G 7 T ² G ² 1] = [0, 0] for 0 =¸@�\¹ .
For the nodes, ^"A&^¶µ 1 A�R�R�RuA&^¶µ] , we first check if wµ 1 =¸< .
If ºµ 1 =»< , all the nodes in the series are guaranteed
to be issued at the same time and no special refinement
step is necessary to reflect the effect of the multiple-issue
identification. On the other hand, if ¼µ 1 ½�< , not all the
nodes in the series can be issued simultaneously. Since our

machine model assumes an in-order issue, only the first <
nodes, ^�A�^¾µ 1 A�R�R�RuA�^¾µ3< � 1 can be issued at the same time.
The remaining nodes, ^ºµ|<wA�R�R�RSA�^ºµ¿ , should be issued at
least one cycle later than the first < nodes. Therefore, in case
that �µ 1 ½À< , after identifying the first < nodes, the IDG
should be modified. To represent that only the first < nodes
can be issued simultaneously, we replace an edge between
nodes ^]µ¸< � 1 A&^�µ¸< with an edge of a weight 1. Since
the new edge will change the distance bounds of the IDG,
we recalculate the distance bounds for the affected nodes. A
more detailed description on the multiple issuing algorithm
can be found in [12].

As it will be described in detail in the next section,
an IDG is encoded into the PA structure that represents a
program construct, and two successive IDGs are concate-
nated into a new IDG during the hierarchical refinement
process. Repeated concatenations, however, may require a
large amount of space to maintain all the nodes of the con-
catenated IDGs. Therefore, we propose a merging operation
on an IDG that reduces the number of nodes in an IDG. (In
our proposed technique, a merging operation is performed
after the multiple issuing step.) Two adjacent nodes in an
IDG are merged into a single node if the lower bound of the
distance between two nodes are same as the upper bound
of the distance between two nodes. That is, if � r�G �H(7 H ² 1 is
equal to � r�sutH(7 H ² 1, nodes C and CÁµ 1 can be merged into a
single node. In general,

:
nodes, ^"A&^ºµ 1 A�R�R�RSA�^ºµ : � 1,

can be merged into a single node (after the multiple issuing
step) if [� r�G �T 7 T ² 1 A(� r�sutT 7 T ² 1] = [g G 1 A g G M1], [� r�G �T ² 1 7 T ² 2 AB� r�sutT ² 1 7 T ² 2]
= [g G 2 A g G M2], R�R�R , [� r�G �T ² 9 Y 2 7 T ² 9 Y 1 A(� r�sutT ² 9 Y 2 7 T ² 9 Y 1] =
[g G �BÂ "Ã 1 A g G M�DÂ "Ã 1

] and g GÅÄ V g G M Ä for 1 =Æ<Ç=È^+µ : � 1.
Figure 7(b)-(c) illustrates the merging operation. The IDG
shown in Figure 7(b) includes the distance bounds between
nodes as well as the weights between nodes. In Figure 7(b),
the nodes that can be merged are shown inside a dotted
box. For example, nodes 2 and 3 can be merged because
the distance bounds between them are [1, 1]. Nodes 5, 6
and 7 can be merged as well because they have the distance
bounds [0, 0] and [4, 4]. Since merged nodes (except for
the first node) have a constant distance on their issue times
relative to the first node, no information is lost in predicting
the WCETs by the merging operation. On the other hand,
as the hierarchical analysis proceeds, the number of nodes
that can be merged grows rapidly since most of unresolved
nodes will be resolved during the hierarchical refinement
process. Therefore, the reduction in the number of nodes by
the merging operations is substantial.

There are two more factors to consider during the merging
operation. First, since the merged node represents several
nodes before the merging operations are performed, we have
to modify the weights between the merged node and other
nodes in the merged IDG. (Note that our definition of a
weight between two nodes means the minimum distance

[1,19] [3,21]

[2,18]

[5,23]

[4,20]

[2,16]

(a) (b)

M1

M2

M3

M1 M2 M3 M4
1

2

3

4

5

6

1 652 43 7

[1,19] [2,20] [3,21] [5,23] [7,21] [9,25]

[2,18] [4,20] [6,20] [8,24]

[1,17] [3,19] [5,19] [7,23]

[2,16] [2,16] [6,20]

[0,0] [4,4]

[4,4]

[1,1]

Figure 8. A tabular form representation of dis-
tance bounds.

between the issues of first instructions of the two nodes.)
For example, in Figure 7(c), the weight between merged
nodes � 2 and � 3 is computed to be the sum of a constant
distance between nodes 2 and 3 and the weight between
nodes 3 and 4 in the original IDG. Second, even when a
series of nodes have their distance bounds as [0, 0], these
nodes are not always merged for accurate prediction of the
WCETs. This happens for the following two cases: (1)
a series of nodes have distance bounds of [0, 0], but the
consecutive nodes start from the first node in the IDG and
(2) a series of nodes have distance bounds of [0, 0] but the
last node in the IDG is also a part of these nodes. In the first
case, if we merged the nodes, we will lose some accuracy
when we concatenate with a preceding IDG whose last v
nodes have distance bounds [0, 0]. Similarly, in the second
case, if we merged the nodes, we will lose some accuracy
when we concatenate with a succeeding IDG whose first v
nodes have distance bounds [0, 0].

The distance bounds for all combinations of nodes in an
IDG can be represented as a tabular form. Figure 8 shows
the tabular form representations of the distance bounds for
our example. Figure 8(a) shows the distance bounds for
original IDG and Figure 8(b) shows the distance bounds after
merging is applied to the IDG. This tabular representation
is included into the PA structure for a program construct.

5. Extensions to ETS

In this section, we describe the extensions made to the
original ETS framework to support the WCET prediction
for our multiple-issue machine model. We explain how to
encode the IDG for a program construct in the PA structure
and define the concatenation (�) operation and the pruning
operation using the three distance bounds steps described in
the previous section.

The PA Structure To take into account the multiple-issue
capability in the ETS framework, we define the PA structure
of the program construct to include the IDG. To understand
why an IDG is used instead of a reservation table which was
used for simple pipelined processors, consider Figure 9 that

LUI $1, 0x1000

LWC1 $f11, 16($1)

LWC1 $f10, 20($1)

LUI $1, 0x1000

LWC1 $f17, 8($1)

LWC1 $f16, 12($1)

LUI $1, 0x1000

MUL.D $f18, $f10, $f16

IF

RD

FRD

ALU

FALU

MD

FMUL

FDIV

MEM

FMEM

WB

FWB

FFWB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X

X X X

X X X

X X

X X

X X

16 17

X X X X

X X X X

X X X X

X

X

X X X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X X

Figure 9. A reservation table example.

shows a reservation table for a sequence of instructions. In
the reservation table, the rows represent the pipeline stages
and the columns represent time, and an x in the reserva-
tion table specifies the use of the corresponding pipeline
stage by an instruction at the indicated cycle. When a reser-
vation table is constructed the issue time of an instruction
relative to others in the same basic block is fixed. This
static assignment of an issue time to an instruction leads
to a severe overestimation of the WCET for multiple-issue
processors because when information on the surrounding
blocks are known later, the issue times cannot be easily ad-
justed reflecting the simultaneously issued instructions from
the different blocks.

The PA structure for multiple-issue machines is shown
in Figure 10. The PA structure for a program construct
consists of five tables. The distance bounds derived from
the IDG for the program construct are included in a table
called bounds table where each cell corresponds to the
distance bounds between the row-numbered node and the
column-numbered node. In order to compute the WCET of
an IDG and to prune redundant PAs, for each node @ in the
IDG, the }3@$v x ~h�N?�v g i v f d/? W @ X and }3~/� x ~h�N?
v g i v f d/? W @ X
are maintained in the PA. Two additional tables,in andout,
are used to detect the transition of unresolved nodes to re-
solved nodes when two PAs are concatenated. The in table
contains the information on the unresolved dependences of
the IDG which may be refined as the resolved dependences
by a preceding IDG at a later stage. For a register, the first
node that uses or defines the register is recorded in the in
table, while, for a functional unit, the first node that occupies
the functional unit in the IDG is recorded in the in table.
On the other hand, the out table contains the information
on the factors that may cause the unresolved dependences of
succeeding IDGs to be refined as the resolved dependences.
In the out table, for a register, the last node that defines the
register is recorded, and, for a functional unit, the last node
that occupies the functional unit is recorded with its latency.
When two PAs are concatenated, these five tables from each
PA are used to construct new tables for the concatenated PA.

From the PA information, we can derive the WCET of the
IDG. Let the WCET of an IDG be the worst case execution
time from the issue of the first node to the end of the execu-
tions of all the nodes. Then we can calculate the WCET of
the IDG as follows. Assume É to be the set of nodes of the

struct PA of a path p 2
struct BOUNDS 2

d min, d max ;8 bounds table[N nodes][N nodes] ;
min latency node[N nodes] ;
max latency node[N nodes] ;
struct IN

in[N resources] ;
struct OUT 2

node ;
latency ;8 out[N resources] ;8 ;

bounds_table

1

1 2

in

resource

node

latency

...
....
....

...

...

out

max_latency_node

min_latency_node

[,] [,]

[,]

resource

node

.....

.....

....
....
....x y

node
latency

node
latency

.....

.....

.....

.....� ! � ®% � % �
� %%�Ê� 2� 1% � %�Ë %�Ê

%�Ë% � %
Ê
%
Ë% �
� � � Ê� Ë
� M Ë � M Ê� M �

Figure 10. The structure of PA.

IDG and }3~/� x ~h�N?
v g i v f d/? W @ X to be the maximum of the
latencies of the functional units in f�gSg ah^ji W @ X as defined in
Section 4. Then the WCET of an IDG can be computed as
follows:Ì

4 � � �NÍ V maxG 6�Î W � r�sSt1 7 G µ[}�~/� x ~/�N?
v g i v f d�? W @ X(X R
This formula produces the time required from the issue of
the first instruction of an IDG to the completion of all the
instructions in the IDG in the worst case. Once the PA for
a whole program is built, we can compute the WCET of
the program from the PA in a similar way. However, in the
calculation of the WCET for the whole program, we can
assume that the instructions in unresolved nodes in the final
IDG are issued with the minimal delay because there will
be no instructions that can resolve these unresolved depen-
dences. Therefore, the WCET for a program is computed as
follows:ÏÆÐÒÑ Ì T � �ZÓ � sur V maxG 6�Î W � r�G �1 7 G µ¿}3~/� x ~h�N?�v g i v f d/? W @ XZX R

The Concatenation and Pruning Operations The sec-
ond step of augmenting the extended timing schema for
multiple-issue machines is to define the semantic of the
concatenation (�) operation according to the structure of
the PA. The concatenation operation on two PAs produces
a new PA containing the information on a new IDG con-
structed by linking two IDGs from the original PAs. In each
concatenation, the three bounds steps (the bounding step, the
multiple issuing step, and the merging step) are applied to
the newly constructed PA. Since the IDG is represented by

the five tables, bounds table, min latency node,
max latency node, in, and out, the five tables are
newly created from the tables in the original PAs.

The concatenation operation on two PAs K 1 and K 2 pro-
ducing a new PA K 3 consists of the following four steps.
Assume that K 2 follows K 1 in a program order. Let

: 4 1

and
: 4 2 denote the number of nodes of the IDGs in K 1

and K 2, respectively. Then, the dimensions of bounds ta-
ble bounds table 4 1 for K 1 is

: 4 1 Ô : 4 1 , while the
dimensions of the bounds table bounds table 4 2 for K 2

is
: 4 2 Ô : 4 2 .
The first step of the concatenation operation is to build a

new bounds table bounds table 4 3 from the original two
bounds tables bounds table 4 1 and bounds table 4 2 .
The size of the newbounds tablewill be initially W : 4 1 µ: 4 2 X Ô W : 4 1 µ : 4 2 X . This initial table models the new
IDG where two original IDGs from K 1 and K 2 are linked to-
gether. Once bounds table 4 3 is initially filled, we apply
the bounding algorithm (to compute the distance bounds),
the multiple issuing algorithm (to identify the instructions
that can be issued simultaneously) and the merging al-
gorithm (to shrink the table size) to bounds table 4 3 .
The new bounds table bounds table 4 3 is initially
filled as follows. Since the distance bounds of instruc-
tions within K 1 and the distance bounds of instructions
within K 2 are not modified by the concatenation operation,
bounds table 4 3[@][C] = bounds table 4 1[@][C]
for 1 =Õ@DA�CÖ= : 4 1 and bounds table 4 3[

: 4 1 µ@][: 4 1 µÇC] = bounds table 4 2[@][C] for 1 =È@DA$C¥=: 4 2 .
The second step of the concatenation is to check if new

dependences exist between a node v 1 of K 1 and a nodev 2 of K 2 after two PAs were concatenated. Since the
new dependences exist when v 1 and v 2 share the com-
mon resources, we compare the out table of K 1 and the
in table of K 2. If a resource m G is found to be shared by
out of K 1 and in of K 2, a new edge with the weight of
out[i].latency from K 1 is attached between the cor-
responding nodes (i.e., node ^ from K 1 and node from K 2

if out[i].node of K 1 is ^ and in[i].node of K 2 is). This new edge with the corresponding weight is used in
filling bounds table 4 3[@][C³µ : 4 1] for 1 =¸@�= : 4 1

and 1 =¡C¿= : 4 2 . Once bounds table 4 3 is built, we
apply the three bounding steps to find the simplified version
of bounds table 4 3 .

The next step is to fill the min latency node and the
max latency node for each node. These latencies are
calculated in the merging step. If nodes C and < are found
to be merged into node } , the min latency node[}]
and the max latency node[}] of the merged node }
are obtained by adding the constant distance between the
nodes C and < to the min latency node[<] and the
max latency node[<] of node < . In this way, the la-

tencies are modified to represent the times from the issue of
the first instruction as defined in Section 4.1.

Finally, the contents of in and out for K 3 are filled
using ins and outs of K 1 and K 2. The in of K 3 is filled by
copying the contents of ins of K 1 and K 2. The contents of
in of K 1 will override the contents of in of K 2. The out
of K 3 is filled in a similar manner.

The last missing component for applying the ETS is to
define the pruning operation. The purpose of a pruning op-
eration is to eliminate the paths that cannot be the worst case
execution path. In other words, in the same WCTA, if the
WCET of a PA K 1 in the worst case scenario is shorter than
the WCET of any other PA K 2 in the best case scenario, a PAK 1 can be safely pruned from the WCTA. The WCET in the
best case scenario of a PA K , which we call

Ì
× F��$Í 4 � � �$Í W K X ,

is defined as follows:Ì
× F��$Í 4 � � �NÍ W K XØV � r�G �1 7 r µ¿}�@$v x ~h�N?
v g i v f d�? W @ X A

where } is the number of nodes in the IDG of a PA K . In
this equation,

Ì
× F��$Í 4 � � �$Í W K X is the minimum delay from the

issue of the first instruction to the issue of the last instruction
in the IDG. On the other hand, the WCET in the worst
case scenario of a PA K , which we call

Ì
4 � � �$Í 4 � � �$Í W K X , is

defined as follows:Ì
4 � � �$Í 4 � � �NÍ W K X�V � r�G �1 7 r µ 2 Ô q
r�sutÙA

where q r�sSt is the maximum latency of an instruction in
the target processor (as defined in Section 4.1). The worst
scenario occurs when the issue of the first instruction in K is
maximally delayed by the dependences with the preceding
program constructs and the instructions in K maximally
delay the issue of the first instruction in the succeeding
program constructs. In order to account for two maximal
delays (before and after K), we add 2 Ô q
r�sut to � r�G �G 7 r . The
pruning condition can be more formally specified as follows:

A PA K in a WCTA
Ï

can be pruned without
affecting the prediction for the worst case
timing behavior of

Ï
if Ú/K�L�Û Ï such that

Ì
4 � � �$Í 4 � � �NÍ W K X \

Ì
× F��NÍ 4 � � �$Í W K�L X R

6. Experimental Results

We have performed experiments to validate our approach
by building a timing tool based on the proposed technique
and comparing the WCET bounds produced by the timing
tool to the simulation results measured from a simulator.
Figure 11 shows an overview of our timing analysis envi-
ronment. The timing analyzer takes as input the assembly
code, program syntax information, and the call graph along
with the user-provided information (e.g., loop bound) to
predict the WCET of the program. A modified lcc compiler

WCET

WCEPModified

Information
User-provided

Graph
Call

Information
Syntax
Program

Code
Assembly

C Source
Program Analyzer

Timing

LCC

Figure 11. Experiment setup.

benchmarks description

Arrsum calculates the sum of 10 array elements.
Fib computes the 30th element of the Fibonacci

sequence.
MM multiplies two 5 Ü 5 matrices.
BS performs binary search over 15 integer array

elements.
ISort sorts 10 integer array elements using the

insertion sort algorithm.
InLP shows more ILP (relative to other benchmarks)

by the manual rearrangement of the assembly
instructions.

Table 2. The benchmarks used in our experi-
ments.

[11] accepts a C source program and generates the inputs to
the timing analyzer.

The predicted WCETs were compared with the mea-
surements obtained from a simulator that models our tar-
get multiple-issue machine model. The simulator was built
using a software tool, called Visualization-based Microar-
chitecture Workbench (VMW) [2], that provides a frame-
work for systematically constructing a processor simulator
at the microarchitecture level. In VMW, a new processor is
specified using several machine specification files and the
corresponding processor simulator is automatically gener-
ated. (The VMW tool has been successfully used to simu-
late multiple-issue processors such as superscalar processors
(e.g., PowerPC620).) The machine specification for the tar-
get multiple-issue machine included a microarchitecture ma-
chine organization specification file (71 lines), an instruction
syntax specification file (115 lines), an instruction semantic
specification file (127 lines), and an instruction timing spec-
ification file (543 lines). The simulator assumes the MIPS
R3000 instruction-set architecture and displays the machine
status during simulations along with the execution times.

Table 2 summarizes the benchmarks used in our exper-
iments. Since the modified lcc compiler was originally
developed for simple pipelined machines without employ-
ing the special compiler optimizations techniques that can
increase instruction-level parallelism (ILP) of the compiled
code, the generated assembly code contains relatively small
ILP. In order to validate the applicability of our technique on

single issue double issue quadruple issue
S P S P S P

Arrsum 108 108 92 92 92 92
Fib 227 227 190 190 189 189
MM 4142 4142 3553 3553 3552 3552
BS 101 106 81 84 80 83

ISort 1262 2126 1088 1844 1087 1844
InLP 3331 3331 2498 2498 2290 2290

S: simulation, P: prediction

Table 3. The experimental results.

programs with more ILP, we made a benchmark called InLP
whose instructions were manually reordered for more ILP
after the assembly code was generated from the modified
lcc. The analysis results and the simulation results for the
benchmarks are compared in Table 3. The results are shown
for three different issue numbers: single issue, double issue,
and quadruple issue. Because of the small ILP available
in the assembly code, as shown in the table, the execution
times of the benchmarks (except for InLP) are very close
each other on a double-issue machine and a quadruple-issue
machine.

For the Arrsum, Fib, MM, and InLP benchmarks, the
analysis results are exactly same as the simulation results
because the execution path of each benchmark program is
unique. However, for BS and ISort, the analysis results are
larger than the simulation results. The differences between
the analysis results and the simulation results are mainly
from infeasible paths. As we discussed in [11], we be-
lieve that the infeasible path problem exists in any static
WCET prediction technique, and the elimination of these
paths using dynamic path analysis is an issue orthogonal to
the WCET prediction approach. The existing path analysis
method (e.g., the work done by Park [13]) can easily be
integrated with the proposed method, thus producing tighter
WCETs for the BS and ISort benchmarks.

7. Conclusion and Future Work

In this paper, we described a timing analysis technique
that can accurately predict the WCETs of tasks for multiple-
issue machines. Our technique is based on the existing ex-
tended timing schema (ETS). We enhanced the ETS frame-
work to account for the timing variation resulting from mul-
tiple issues of instructions per cycle. The main extension
was on the PA structure. Instead of reservation tables used
for the original ETS, we maintain an IDG (Instruction De-
pendence Graph) to represent dependences among instruc-
tions and include it in the PA structure. From the IDG,
the minimum and maximum distance bounds between the
issue times of the instructions are computed. These bounds
are used to identify the instructions that can be issued si-
multaneously. The identification of the constant distance

instructions as well as the simultaneously issued instruc-
tions allows the IDG to be simplified, reducing the number
of necessary nodes to be kept in the IDG. The concatenation
operation is redefined to support the combining of two IDGs
followed by the IDG simplifications. We also redefined the
pruning condition that can eliminate an execution path that
cannot be part of the worst case execution path, considering
the effect of multiple issues on the execution time.

We also built a timing tool based on the proposed tech-
nique and compared the WCET bounds of several bench-
mark programs predicted by the timing tool to their mea-
surements from a simulator. The results show that the
proposed technique can predict the WCETs for in-order,
multiple-issue machines in a similar accuracy to the results
from simple pipelined processors.

Our work described in this paper strongly suggests that
the multiple-issue capability of modern microprocessors can
be accurately analyzed to predict the WCETs of programs.
However, to estimate the WCETs of tasks for more realistic
multiple-issue processors such as commercial superscalar
processors, our technique needs to be extended further to
handle other advanced architectural features that can cause
the timing variation in multiple-issue processors. For exam-
ple, many superscalar processors execute in an out-of-order,
multiple-issue fashion and support the dynamic scheduling,
dynamic branch prediction and speculative execution [6].
Since these features all affect the execution time, the pro-
posed technique should be extended to account for these fea-
tures. Therefore, our current research direction is focused
on developing the techniques for modeling these dynamic
architectural features and predicting the WCETs taking into
account the timing effect of these features.

References

[1] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bound-
ing Worst-Case Instruction Cache Performance. In Proceed-
ings of the 15th Real-Time Systems Symposium, pages 172–
181, 1994.

[2] T. A. Diep and J. P. Shen. VMW: A Visualization-Based
Microarchitecture Workbench. IEEE Computer, 28(12):57–
64, 1995.

[3] J. Ferrante, K. Ottenstein, and J. Warren. The Program De-
pendence Graph and Its Use in Optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319–
349, July 1987.

[4] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the Timing Analysis of Pipelining and Instruction Caching.
In Proceedings of the 16th Real-Time Systems Symposium,
pages 288–297, December 1995.

[5] J. Hennessy and T. Gross. Postpass Code Optimization of
Pipeline Constraints. ACM Transactions on Programming
Languages and Systems, 5(3):422–448, July 1983.

[6] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach 2nd Ed. Morgan Kaufmann
Publishers, San Mateo, CA, 1996.

[7] M. Johnson. Superscalar Microprocessor Design. Prentice
Hall, 1991.

[8] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1991.

[9] R. M. Karp. A Characterization of the Minimum Cycle Mean
in a Digraph. Discrete Mathematics, 23:309–311, 1978.

[10] Y. S. Li, S. Malik, and A. Wolfe. Cache Modeling for Real-
Time Software: Beyond Direct Mapped Instruction Caches.
In Proceedings of the 17th Real-Time Systems Symposium,
pages 254–263, 1996.

[11] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, and C. S. Kim. An Accurate
Worst Case Timing Analysis for RISC Processors. IEEE
Transactions on Software Engineering, 21(7):593–604, July
1995.

[12] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A Worst
Case Timing Analysis Technique for Multiple-Issue Proces-
sors. Technical Report SNU-CE-AN-98-001, Architecture
and Network Laboratory, Seoul National University, 1998.

[13] C. Y. Park. Predicting Program Execution Times by Analyz-
ing Static and Dynamic Program Paths. Real-Time Systems,
5(1):31–62, March 1993.

[14] A. C. Shaw. Reasoning About Time in Higher-Level Lan-
guage Software. IEEE Transactions on Software Engineer-
ing, 15(7):875–889, July 1989.

[15] N. Zhang, A. Burns, and M. Nicholson. Pipelined Proces-
sors and Worst-Case Execution Times. Real-Time Systems,
5(4):319–343, Oct. 1993.

