J. Parallel Distrib. Comput. 71 (2011) 1545-1557

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

A leakage-aware L2 cache management technique for producer-consumer
sharing in low-power chip multiprocessors

Hyunhee Kim, Jihong Kim *

School of Computer Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:

Received 26 May 2010

Received in revised form

13 April 2011

Accepted 24 August 2011
Available online 31 August 2011

This paper proposes a novel leakage management technique for applications with producer-consumer
sharing patterns. Although previous research has proposed leakage management techniques by turning
off inactive cache blocks, these techniques can be further improved by exploiting the various run-time
characteristics of target applications in CMPs. By exploiting particular access sequences observed in
producer-consumer sharing patterns and the spatial locality of shared buffers, our technique enables a

more aggressive turn-off of L2 cache blocks of these buffers. Experimental results using a CMP simulator

Keywords:

Chip multiprocessors

L2 cache

Leakage
Producer-consumer sharing

show that our proposed technique reduces the energy consumption of on-chip L2 caches, a shared bus,
and off-chip memory by up to 31.3% over the existing cache leakage power management techniques with
no significant performance loss.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

One of the major concerns in designing modern chip-
multiprocessors (CMPs) has been power dissipation that consists
of dynamic power and static power. Dynamic power is caused by
the transistor switching activity while static power is mainly due
to sub-threshold and gate-oxide leakage. Since static power is a
major source of total power dissipation as the process technol-
ogy advances below 65 nm, managing static power consumption
has become one of the critical design objectives in realizing low-
power CMPs. According to the International Technology Roadmap
for Semiconductor (ITRS) [14], one of the key challenges for low-
power chips is to manage the leakage power of devices since us-
ing low leakage devices can significantly reduce the static power of
chips without degrading its performance. Although the emerging
technology, such as high-K dielectrics [20], can effectively reduce
gate-oxide leakage, subthreshold leakage is still dominant in total
leakage power consumption.

In most CMPs, a large on-chip L2 cache is employed to hide
the performance gap between processors and main memory.
Furthermore, on-chip cache size is expected to increase in future
CMPs because more processor cores will demand more data
transfers from the main memory. Because of its size, an L2 cache
often becomes the major source of the on-chip leakage power
among all of the on-chip components. For instance, for a single
processor, it is known that 30% of total power dissipation in Alpha

* Corresponding author.
E-mail addresses: hh0726@davinci.snu.ac.kr (H. Kim),
jihong@davinci.snu.ac.kr, jihong.kim.snu@gmail.com (J. Kim).

0743-7315/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2011.08.006

21264 and 60% in StrongARM is consumed by cache and memory
structures [19]. As for a multicore processor, in the Niagara-2
processor, an L2 cache consumes more than 20% of total power
dissipation while the power consumption of cores accounts for
30%. In [7], simulation results have shown that 37% of total power
is consumed by an L2 cache on average when running parallel
applications and 97% of this is the leakage power consumption.
In addition, the simulation results in [21] have also shown that
leakage energy consumption ranges from 80% (2-core 2-issue 8-
MB L2) to 30% (8-core 8-issue 1-MB L2) and most of it is consumed
by L2 caches. These results emphasize that reducing the leakage
power consumption of an L2 cache becomes particularly important
for modern CMPs.

One widely used technique for reducing the leakage power
consumption in a cache is the cache block turn-off technique.
Gated-Vyq [23] eliminates the leakage power consumption of a
SRAM cell by gating off supply voltage when it is not active.
This circuit is employed by the cache decay technique [15], and
the cache block is turned off when they are not accessed for a
predefined number of time-out threshold cycles until the next
miss occurs. In this technique, additional misses occur because
the turned-off cache blocks do not preserve data. To overcome
the drawbacks of the cache decay, the drowsy cache [11] supplies
minimum power to preserve data. Although this technique does
not incur extra misses, the access latency of a cache increases,
which causes performance degradation. On the other hand, the
Adaptive Mode Control (AMC) technique [28] has proposed a
method to dynamically change the time-out threshold value by
using the run-time characteristics of applications, and use the
smaller time-out threshold value if the overall performance does
not degrade. This allows cache blocks to be turned off earlier than

http://dx.doi.org/10.1016/j.jpdc.2011.08.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:hh0726@davinci.snu.ac.kr
mailto:jihong@davinci.snu.ac.kr
mailto:jihong.kim.snu@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2011.08.006

1546 H. Kim, J. Kim /J. Parallel Distrib. Comput. 71 (2011) 1545-1557

when the static predefined threshold value is used. However, these
techniques are designed for single processors and thus do not
consider the characteristics of the cache blocks in CMPs.

The existing leakage management techniques can be further
improved by exploiting the characteristics of cache blocks in CMPs.
Virtual Exclusion proposed in [12] exploits the multi-level inclu-
sion property (which is an essential property for efficiently im-
plementing cache coherence protocols in multiprocessor systems)
in order to save leakage power consumption. It reduces leakage
power consumption by turning off repetitive cache blocks in an
L2 cache. However, it can be used only when the sizes of L1 and
L2 cache blocks are the same. Monchiero et al. [22] propose tech-
niques to save the leakage power consumption of private L2 caches
in CMPs by using cache coherence protocols. They propose three
techniques (1) that turns off L2 cache blocks when they are inval-
idated by other processors, (2) that turns off L2 cache blocks only
after invalidating the corresponding L1 cache blocks, and (3) that
avoids turning off modified cache blocks to diminish performance
degradation. In these techniques, although the amount of power
consumption is reduced compared to the decay technique, the
overall performance is improved instead. The Replication-Aware
Leakage Management (RALM) technique [16] also reduces leakage
energy consumption of L2 caches in CMPs by selectively turning off
cache blocks when other processors replicate them. This technique
is useful in reducing energy consumption of read-only replications.

Our proposed technique described in this paper also reduces
the leakage power consumption in an L2 cache but focuses on the
characteristics of the cache blocks in applications, especially, with
the producer-consumer data sharing method which is one of the
most commonly used in multi-threaded applications as reported in
[9,27]. We propose a leakage-aware L2 cache management tech-
nique for producer-consumer sharing, called LAPC, which reduces
the leakage power consumption of a private L2 cache in CMPs. Fig. 1
shows an overview of a target CMP architecture with private L2
caches, where a MESI-like snoop-based cache coherence protocol
is used. A shared L2 cache could also be an option for the L2 cache
organization in CMPs. However, prior research [8,3,24] has shown
that a private L2 cache achieves better performance if it is effi-
ciently managed. It chooses a private L2 cache organization based
on following reasons. First, a private L2 cache has a shorter access
latency than a shared L2 cache since data are located closer to the
core while they are spread across an entire shared L2 cache. Sec-
ond, a private L2 cache can provide performance isolation while
threads are interfered in a shared L2 cache. Third, a private L2 cache
also has benefits in terms of power consumption. For example, it
can be considered as a unit of the power management and can sim-
ply be turned off when the core is idle. Finally, CMPs with a pri-
vate L2 cache organization require a simple on-chip interconnect
since only the misses from a private L2 cache access an intercon-
nect, which also consumes less power. Therefore, it does not re-
quire the interconnect with high bandwidth, such as the crossbar
in Niagara-1 [24], and thus the proposed low-power technique is
developed based on this low-power and simple architecture.

In these multiprocessor systems with private L2 cache, when
multiple processors share the same memory block, its copies are
made in each local private L2 cache. Particularly, in an application
where a producer and a consumer threads communicate with
each other through shared buffers, because they share the same
memory blocks that belong to the shared buffers, the cache
blocks for these memory blocks are copied in a producer’s and a
consumer’s caches. When a producer thread writes the produced
data into the shared buffer, however, a copy in a consumer’s cache,
which is part of the shared buffers, is invalidated to maintain cache
coherency. It means that, after a consumer thread reads the data
from the shared buffer, the shared cache block belonging to the
shared buffer in a consumer’s cache can be immediately turned

PO P1 P2 P3
I e i e i e i
R B I N I B
[l | | Shared Bus]|
| Merlnory |

Fig. 1. An overall architecture of a target system.

off, which is possible if we know which cache blocks belong to the
shared buffer.

The proposed technique, first, detects the addresses of the
shared buffer that a producer and a consumer thread use to
communicate with each other by observing the particular pattern
of cache coherence transactions. Second, it adapts an aggressive
time-out threshold to the detected shared buffer cache blocks
in order to aggressively turn them off. The simulation results
show that this simple technique can improve the efficiency of the
existing leakage management technique by up to 31.3% with no
significant performance loss and negligible hardware overhead.
The rest of this paper is organized as follows. In Section 2, we
show the motivation of the proposed technique while the LAPC
technique is described in detail in Section 3. Section 4 shows the
comparison results of the proposed and other existing techniques.
Finally, Section 5 concludes with a summary and directions for
future work.

2. Motivation

Leakage power consumption becomes a major design issue in
realizing low-power microprocessors as the process technology
advances. Even though the existing techniques can efficiently
reduce the leakage power consumption in L2 caches, they can be
improved mainly by exploiting the special characteristics of cache
blocks in CMPs. In CMPs, in particular, these characteristics occur
when multiple threads communicate with each other by sharing
memory space. One of the most well-known data sharing patterns
is producer-consumer data sharing where a producer thread
writes data into the designated shared buffers and subsequently
a consumer thread reads the data written by the producer thread.
The proposed technique is based on the characteristics of cache
blocks which are observed in producer-consumer applications. In
this section, we describe the characteristics of shared buffer cache
blocks and explain how they are exploited.

In multiprocessor systems with private L2 cache, several copies
of the same memory block are allocated in each private L2 cache
when multiple processors share it. Especially in an application with
producer-consumer sharing patterns, the memory blocks which
belong to shared buffers are shared by a producer’s and a con-
sumer’s processors, and the copies of the same memory blocks are
allocated in each cache. When a producer writes the data into the
shared buffer, the corresponding copy in a consumer’s cache is in-
validated in order to maintain cache coherency. If it is detected
that the cache block belongs to shared buffers, the cache block
can be immediately turned off after the last read request is issued.
The proposed technique aims to aggressively turn off a consumer’s
cache blocks which belong to the shared buffers without perfor-
mance loss in order to reduce leakage power consumption.

The proposed technique to detect and aggressively turn off
shared buffer cache blocks is based on the following observations.
First, when a producer and a consumer access the shared buffer, a
particular pattern of cache coherence transactions occurs. Fig. 2

H. Kim, J. Kim /]. Parallel Distrib. Comput. 71 (2011) 1545-1557

PO
(Producer)

1547

Pl
(Consumer)

Private L2 '

© Read miss A

h

8 Shared Bus

O Read A

| Memory

Fig. 2. A series of cache coherence transactions.

Read Miss

Consumer’s

(a) The turned-off cache block in DECAY.

T] Read Miss
AR Dy spc T Dpgcay (new data)
DECAY
Last Re:
Burst of Reads
I L r'e >
cache block v \ 4
Read Miss
. (new data)
Lare Tpecay

Read Miss

&

l)I APC
Last Rea
Burst of Reads |

Y

Consumer’s \l/
cache block

!

(b) The turned-on cache block in DECAY.

Fig. 3. The time-out threshold cycles and dead cycles in DECAY and LAPC.

illustrates a series of cache coherence transactions that occurs
when a producer and a consumer communicate through the shared
buffer, assuming a snoop-based MESI (Modified, Exclusive, Shared,
Invalid) protocol [10]. In this figure, “A” is one of the shared buffer
addresses. (1) Every time a producer writes data to the shared
buffer, (2) it generates the cache coherence transaction “ReadX
A” in order to exclusively read the data by invalidating a copy of
the same data in another cache, if it exists. (3) On the other hand,
whenever a consumer tries to read the produced data from the
shared buffer which is written by a producer, a read miss occurs
because the data is invalidated by a producer in (2). (4) a consumer
generates “Read A” to read the data from other caches or off-
chip memory. These “ReadX” and “Read” transactions occur on
the shared bus for all of the shared buffer addresses whenever a
producer and a consumer access the shared buffer to communicate.
Therefore, if this pattern is detected for a particular address, it
might be a shared variable or part of the shared buffer addresses.
Since the shared buffers are generally located in consecutive
memory space, the addresses of the shared buffers that are present
on the shared bus have a high-level spatial locality. In the proposed
technique, if consecutive addresses with a pair of “ReadX” and
“Read” transactions are detected, they are considered part of the
shared buffer.

Second, if the addresses of the shared buffer are known, their
cache blocks can be turned off earlier than other cache blocks based
on their special access patterns. In a consumer’s cache, the cache

block belonging to the shared buffer is read from a producer’s
cache or the off-chip memory every time a consumer tries to
read the data written by a producer. In most producer-consumer
applications, once a consumer copies the produced data from the
shared buffer into its local memory space, it processes its work
with the local data. In addition, since the shared buffer has high
spatial locality, a burst of the read requests are sent to the cache
block when a consumer reads the data from the shared buffer.
After the burst, the cache blocks are not accessed any more and
invalidated by a producer when the producer modifies the data. It
means that we can turn them off immediately after the last request
in the burst of the reads is issued in order to reduce the leakage
power consumption. It should be noted that this does not incur any
performance loss because the data might not be needed again.

Fig. 3 shows the time-out threshold and dead cycles of the
cache block belonging to the shared buffer on a consumer’s side
especially when using the DECAY and LAPC techniques. Fig. 3 (a)
shows the case of a cache block that can be turned off while Fig. 3
(b) shows the case of a cache block which cannot be turned off
when using the cache decay technique [15]. Tpgcay and Dpgcay
indicate the time-out threshold and dead cycles of the cache
decay technique which does not consider the characteristics of the
application, respectively. In this technique, if a cache block is not
accessed for the Tpgcay cycles, it is turned off for the Dpgcay cycles
until the next miss occurs.

1548 H. Kim, J. Kim /J. Parallel Distrib. Comput. 71 (2011) 1545-1557
Global Table PO P1 P2 P3
| — | — | — 1
address [P[C EEX [t | ou | B [] oui |
[1 [1 [1 [
Stream || Private Private Private Private
address | P[C Registers L2 Registers L2 Registers L2 Registers L2
T2 4
T T T T T i T I
[Shared Bus |
I
Off-Chip Memory

Fig. 4. An overall architecture of LAPC.

We can improve the existing cache decay technique using an
adaptive time-out threshold for shared buffer cache blocks. When
we use the time-out threshold value without considering any
characteristics of cache blocks, they should be long enough to avoid
extra misses such as Tpgcay in Fig. 3. However, as for the cache
blocks of shared buffers, we can turn them off without waiting for
the Tpgcay cycles as described in Section 2. The proposed technique
adapts the time-out threshold value to T;spc, which is much shorter
than Tpgcay, only for the cache blocks of shared buffers in order to
turn them off aggressively. Therefore, a cache block can be turned
off for the Diapc cycles that are longer than the Dpgcay cycles,
thereby saving more energy. Furthermore, as can be seen in Fig. 3
(b), a cache block that is not turned off using Tpgcay can be turned
off if the time-out threshold value is adapted to Tjapc. The amount
of the energy reduced by the LAPC technique, E;edyction, COmpared
to when using Tpgcay as the time-out threshold value for all the
cache blocks becomes as follows:

Non Noff
Ereduction = {Z(DLAPG — DpEcay) + Z Drapci ¢ X Eblock teak> (1)

i=1 i=1
where N, and Ny refer to the number of turned-on or turned-
off cache blocks among the shared buffer cache blocks when
the existing cache decay technique is used while Epjock leak iS the
leakage power consumption of a cache block. As for the ith cache
block among the N, blocks, it can be turned off for (Dyapc; — Dpgcay)
more cycles than the cache decay technique. On the other hand, as
for the ith among the Ny blocks, it can be turned off for the Dyapc;
cycles even though the cache decay technique cannot turn it off.

Based on these characteristics, the proposed technique detects

the cache blocks that belong to the shared buffer memory space
and maintains them using only a small hardware. For the detected
addresses, it applies an aggressive time-out threshold to reduce the
leakage power consumption. In the next section, we explain the
technique for detecting shared buffer addresses in detail and show
how to apply the adaptive time-out threshold to them.

3. Leakage-aware L2 cache management technique

3.1. Overall architecture

Fig. 4 shows the overall architecture of LAPC which consists of
the global table attached to the shared bus and stream registers for
each private L2 cache. The global table detects the shared buffer ad-
dresses by monitoring “ReadX” and “Read” coherence transactions
on the shared bus. If a pair of these transactions is found for a cer-
tain memory address, it is considered as one of the shared buffer
addresses. The stream registers maintain the detected addresses
with a high level of spatial locality. After detecting the addresses
of the shared buffer, the proposed technique adapts their time-out
threshold value. The detailed operations of the global table and the
stream registers are explained in Section 3.2. In Section 3.3, we de-
scribe how to adapt the time-out threshold value of the detected
cache blocks; the hardware overhead of the proposed technique is
calculated in Section 3.4.

3.2. Shared buffer stream detection

The global table maintains entries which have an address
and a set of bits representing a producer’s (P) and a consumer’s
(C) processors of the corresponding address. This global table is
attached to the shared bus and monitors the cache coherence
transactions presented on the shared bus, especially, “Read” and
“ReadX”. For example, when a producer writes the produced
data to one of the shared buffer addresses “0x81280”, a “ReadX
0x81280” transaction is generated if the corresponding cache block
is shared by other caches. The global table monitors the transaction
and is searched to check if there is an entry for “0x81280". If
the entry does not exist, a new entry for this address is allocated
in the global table. Since this transaction is generated from a
producer’s cache, the P field of the corresponding entry is set to
record a producer’s ID. On the other hand, when a consumer tries to
read the produced data from the shared buffer, a “Read 0x81280”
transaction is generated. When the transaction is detected by the
global table, the table is searched to find the entry with the same
address. Since a producer has previously allocated an entry for this
address, the corresponding entry with the P field set exists. The C
field of the entry is set to represent the processor ID of a consumer.
When the entry is evicted from the global table, it is inserted into
the stream register of a consumer’s cache using the C field of the
entry.

To efficiently manage the consecutive addresses of the detected
shared buffer using a small hardware, we employ the stream
registers as in Fig. 5. The stream registers were proposed in [25]
for snoop filtering. This technique proposed the stream registers
to filter the snoop requests from other caches which are not
present in the cache because only a small fraction of snoop requests
are actually relevant to the cache. In this technique, the stream
registers keep track of the cache blocks in the cache. In particular, it
has advantages in applications with a high level of spatial locality
because each stream register records address streams using only
a small hardware, not each address. In this paper, however, we
use them to store the address streams of the shared buffer by
exploiting their high spatial locality because the shared buffers
are generally located in the consecutive memory space and each
reference to the shared buffers occurs sequentially.

Fig. 5 shows each entry of the stream registers and how it
operates. Each stream register has several fields which represent a
base address, a mask, and a hit interval (HI). The HI fields are added
to the original stream registers [25] for our proposed scheme. The
base address field has address bits that are common to all of the
addresses represented by this stream register. The mask bits are
used in deciding whether or not an incoming address matches
the base of the stream register. Here, the zero bits of the mask
indicate “don’t-care” bits. In order to check if the incoming address
matches, the base address and the incoming address should be
compared after each of them is ANDed with the corresponding
mask bits.

When the entry for the address “0x81200, P=0001, C=0001"
is evicted from the global table, for example, it is inserted to the
corresponding stream registers using the C field of the entry. At
first, if there is no entry in the stream register, the new entry is

H. Kim, J. Kim /]. Parallel Distrib. Comput. 71 (2011) 1545-1557 1549
address
Global Counter
S WRD Power-Off
Stream Registers | |
] _TagAddr] coumer | coumter ["M Cache Block
Address Mask HI 1 TagAddr] | Threshold Local M
ress as = g g Counter Counter PmC Cache Block
a o
| S o
2 S
2
A Q e

Threshold Local
l | Tag Addr ﬂ Counter | Counter |-| PmcC |—| Cache Block |
l v |
MUX

AND | v

Cavo] | —
Tag Match >

Timeout threshol v

Hit/Miss

v shared buffer
address?

Fig. 5. An overall architecture to adapt the time-out threshold value for the detected shared buffer cache blocks.

allocated in order to store the address, by setting the mask bits to
“OXFFFFFFFF”. When another entry for the transaction “0x81280,
P=0001, C=0010" is allocated in the global table, it is merged with
the existing entry only by updating the mask so that a differing
bit position between the base and the incoming address becomes
zero in the mask, i.e. OXFFFFFF7F. As in [25], we adopt the “Most
Matching Upper Bits” scheme, which selects the entry with the
longest matching bits from the high-order bits when deciding
which entry to merge with. If there is no empty entry in the stream
registers, a FIFO replacement policy is used. If multiple processors
access the shared buffer addresses, all of the corresponding P and C
bits in the global table entry are set. When the entry is evicted from
the global table, the address is sent to all of the consumers using
its C bits. This means that the detected addresses are replicated in
all of the consumers’ stream registers.

The proposed technique applies an adaptive time-out threshold
value only for the detected shared buffer cache blocks whose
addresses are in the stream registers. For the cache blocks whose
addresses are not in the stream registers (because addresses
have been evicted from the stream registers or have not been
detected yet), a predefined time-out threshold value is applied. An
adaptive time-out threshold value for the detected shared buffer
is determined based on the hit interval time. The HI field of a
stream register entry is updated with the interval time between
hits whenever the hit occurs in the corresponding cache blocks.
When the hit occurs in the L2 cache, the stream registers are
searched to see if there is an entry that matches the hit address.
For example, when the address “0x81280" hits in the cache, stream
register lookups are performed by comparing the base address and
the hit address which are ANDed with the mask. If the results are
the same, this means that the hit address belongs to the shared
buffer, so its HI field is updated. How to obtain the hit interval
time is described in the next section. It should be noted that the
incoming address and the stream registers are compared in parallel
with the tag lookups, which means that it is not in the critical path.

Our proposed technique does not decrease the overall perfor-
mance even when a target application is known to have no pro-
ducer-consumer sharing. When a target application does not have
any cache blocks with these patterns, the proposed technique does
not detect any addresses and thus does not apply the aggressive
turn-off technique. On the other hand, a pair of the ReadX and
Read coherence transactions happens for other communication
patterns. For instance, any cache block for a shared variable can
exhibit this pattern once one processor modifies and then another

processor reads it. If this pattern occurs again after the detection,
energy consumption can be reduced by turning it off earlier than
other cache blocks. However, even when a cache block is turned
off by a wrong prediction, but accessed again, data can be brought
from another on-chip cache since its copy exists in the cache that
generates a ReadX transaction, which means that the penalty of
extra miss is small.

When a thread is migrated to another processor, the shared
buffer addresses that have been stored in its original stream
registers would not be accessed anymore. If the other threads are
scheduled and access their shared buffer addresses, new addresses
are detected and replace the previous shared buffer addresses. On
the other hand, if the thread accesses the shared buffer addresses
after migrating, the shared buffer addresses are detected again and
stored in its new stream registers. This migration process might
slightly decrease the energy reduction by LAPC because the shared
buffer cache block could not be aggressively turned off during the
migration. However, it does not affect the overall performance.

3.3. Adaptive cache decay implementation

LAPCis based on the time-out based cache decay technique [15].
However, it uses different time-out values for the detected shared
buffer cache blocks. A predefined time-out threshold value is used
for all cache blocks except for the ones belonging to shared buffers.
For the detected shared buffer cache blocks, the time-out value is
determined based on the interval time between the hits because
they are likely to be invalidated after the burst accesses. By using
smaller time-out values than the cache decay technique, LAPC can
aggressively turn off the shared buffer cache blocks.

Fig. 5 shows the architecture to adapt the time-out threshold of
the cache block belonging to the shared buffer using the stream
registers. Similar to the cache decay technique, the proposed
technique also keeps track of the elapsed cycles from the last
access by using two levels of counters, global and local ones. The
global cycle counter sends the tick to the local counters every
preset number of cycles and the local counter of each cache block
is incremented whenever it gets a tick from the global counter.
We also use a threshold cycle counter in addition to the local
counter for each cache block in order to implement the adaptive
decay technique. The cache block is turned off when the local
counter reaches the threshold cycle counter value. As shown in the
figure, Power Mode Control (PMC) is used to turn off the cache
block by switching the supply voltage to 0 V. When the cache

1550 H. Kim, J. Kim /J. Parallel Distrib. Comput. 71 (2011) 1545-1557

block is accessed, its supply voltage is switched to 1.0 V to turn
it on. Meanwhile, the local counters are set to zero every time the
corresponding cache block is accessed in order to keep track of the
number of cycles since the last access. In this evaluation, the global
counter sends a tick to the local counters every 1000 cycles and the
predefined threshold value is 4 million cycles, which is used for the
L2 cache in [15].

The proposed scheme is also based on the private L2 cache
organization that uses the inclusion property [10], which is
usually used in multi-level caches to efficiently implement a
cache coherence in multiprocessor systems. To correctly maintain
cache coherence and the inclusion property while employing the
cache decay technique, the corresponding L1 cache blocks are
invalidated when an L2 cache block is turned off, which might
cause performance degradation. However, both the cache decay
and the proposed techniques turn off L2 cache blocks only when
the L2 cache blocks are expected not to be reused in the near future.
They determine an L2 cache block is not likely to be reused soon
if it is not accessed during predefined time-out threshold cycles.
Our heuristic also indirectly assumes that the corresponding L1
cache blocks are also unlikely to be reused in the near future,
thus L1-block invalidations do not significantly degrade the system
performance. When turned-off cache block is needed again, the
missing data is brought from off-chip memory or another core’s
private L2 cache if the cache has the data while turning on the cache
block. Since turning on the cache block can be completed before the
missing data is brought into the local private L2 cache, the penalty
is the same as additional cycles caused by extra misses.

When a hit to the cache block that belongs to the shared
buffer occurs, the HI field of the corresponding stream register
entry is set to the value of the local counter. On the other hand,
when a miss in the cache block that belongs to the shared buffer
occurs, the threshold counter of the corresponding cache block
is set to the doubled value of the HI field of the matched stream
register while bringing the data from the off-chip memory. If the
missed address is not one of the shared buffer addresses, the
corresponding threshold counter is set to the predefined threshold
value.

3.4. Implementation overhead

To implement the proposed technique, we use a global table
with 1024 entries, which is large enough to detect the addresses of
the shared buffer. We show that the evaluation results by varying
the size of the global table in Section 4. Each entry has an address
field with 25 bits and producer and consumer fields with 4 bits,
respectively, assuming CMPs with 4 processors. In addition, each
private L2 cache has 16 stream registers each of which has a 25-
bit base address, a 25-bit mask, and a 5-bit hit interval field. Since
the global table records only the block address of the transactions,
25 bits for the base address and 25 bits for the mask are used if
the block size is 128 bytes. 5 bits for the hit intervals are enough
because the hit to the cache line belonging to the shared buffer
occurs with a very short interval.

For the proposed technique, we add 12-bit threshold counters
to store adaptive time-out threshold values in addition to the local
counters that the existing cache decay technique employs. The
threshold cycle counters and the local counters should be longer
than the hit interval ones because the former counters record the
time-out threshold value and the latter ones keep track of the
elapsed cycles from the last access. Therefore, in the proposed
technique, the implementation requires a total storage overhead
of about 28 KB (4224 bytes for the global table + 440 bytes for all
steam registers of the 4 processors + 24576 bytes for threshold
counters of four 512 KB private L2 caches). Area overhead of LAPC
is also estimated using CACTI 6.5 [5]. The area of the global table
and the stream registers is about 0.02 mm? while the area of 4

Table 1
Architectural parameters for the simulation.

Architectural parameter Specifications

4 Processors, in-order
private, 16 KB, 2-way, 32 bytes blocks
private, 512 KB, 4-way, 128 bytes blocks

Processors
L11/D caches
L2 unified cache

L1 cache latency 1 cycles
L2 cache latency 8 cycles
Off-chip memory latency 300 cycles

Table 2
Power/energy parameters for the CMP simulator.

Power/energy parameter Specifications

CMOS process technology 450m
Private 12 cache Lestage poweriblock 0098 mw
Global table Eg;;;gfpi‘;ﬁ;%y/ access 10 mw
Stream register gga[;;rgeicpeor‘lsgy/access (5);9115\]/
Shared bus Leatage power B
Off chip memory gte:ndé\é\;ri;z \?v}érrlamic energy g()n{n W

private 512 KB caches is 6.70 mm?, and thus the area increased by
the additional structures is less than 0.3% of the total L2 cache area.
Asin[15], thereis also a 3% area increase for the cache cells because
of the logic used to turn off the cache block and the local counter at
each cache block. Although the proposed technique assumes 32-bit
addresses, it can be easily extended to 64-bit address systems by
increasing the addresses and the mask bits stored in a global table
and stream registers to 64 bits. This increases the area overheads
of these additional structures to twice of the current overheads,
which are still negligible.

4. Evaluation
4.1. Simulation configuration

We evaluated the proposed technique using a multiprocessor
simulator [17] which implements a snoop-based MESI protocol
using a shared bus. The proposed technique can be easily applied
even to the systems with MOESI because it is orthogonal to
a coherence protocol. Shared buffer addresses are detected by
their coherence bus transactions such as ReadX and Read, and
a pair of these bus transactions also occurs for the shared
buffer addresses even though MOESI is used. Table 1 shows the
architectural parameters used for the evaluation. We use in-order
processors adopted in the multiprocessor systems which prefer
simple multiple processors for low-power consumption, such as
netbooks, tablet PCs, and smart phones, while simultaneously
achieving high-performance through TLP. Many of these high-end
embedded systems employ the low-power architectures because
they are battery-operated systems. For example, Intel’s Atom and
ARM11 MPCore, which are the representative high-end embedded
multiprocessors, employ an in-order pipeline for their low-power
consumption. We obtained power parameters for an L2 cache from
CACTI 6.5 [5] using the 45 nm technology and off-chip memory
from [6]. The power consumption of a shared bus is also obtained
using the bus power model in [1] based on the ITRS. Table 2 shows
the power/energy parameters used in the evaluations.

4.2. Benchmark applications

We evaluated the proposed technique using manually com-
posed multi-threaded programs and general multi-threaded appli-
cations. For the manually composed 4 multi-threaded programs,

H. Kim, J. Kim /]. Parallel Distrib. Comput. 71 (2011) 1545-1557 1551

Table 3
Four benchmark combinations used in the experiments.

Benchmark name Combinations

benchl LU, FFT, G721, encblowfish
bench2 FFT, MMUL, LU, QSORT

bench3 IFFT, ADPCM, decblowfish, QSORT
bench4 LU, MMUL, IFFT, QSORT

we use benchl, bench2, bench3, and bench4, whose threads
communicate with each other through shared buffers. Since we
can easily change the sizes of shared buffers in these benchmark
programs, we can evaluate how the sizes of the shared buffers af-
fect the proposed technique using these benchmark programs. For
these programs, we selected 9 sequential programs from media-
bench [18] and mibench [13] and combined four of them into one
multi-threaded program. The selected sequential programs are LU,
fast Fourier transform (FFT), inverse fast Fourier transform (IFFT),
matrix multiplication (MMUL), ADPCM, blowfish data encryption
(encblowfish) and decryption (decblowfish), g721 speech com-
pression (G721), and quick sort (QSORT), which are representative
embedded applications in audio, video, and digital filtering pro-
cessing and security areas. Table 3 summarizes the detailed bench-
mark combinations for benchi, bench2, bench3, and bench4,
used in the evaluations. In these combinations, each sequential
program is mapped to each core as a thread and executed in a
pipelined fashion. Every thread, except for the first and the last
threads, keeps two shared buffers. It reads data from one shared
buffer and performs its work with the data it has read. After fin-
ishing its work, it writes results to another shared buffer that its
neighbor thread reads from. Therefore, the input set of each thread
is the data read from the shared buffer. With these input data, a
thread begins its work after every 32 KB data is read from its shared
buffer, and this process is repeated. These pipelined styles are typ-
ically used for streaming or signal processing applications. Since
each sequential program has different characteristics (e.g., differ-
ent IPCs, different execution times, different working set sizes,
etc.), the evaluations with these combinations can demonstrate
that the proposed technique efficiently works in the tasks with
various characteristics. For these benchmarks, the default shared
buffer sizes are 32 KB. However, with these manually combined
benchmarks, a more detailed experiment can be done by varying
the sizes of shared buffers in order to see how they affect energy
reduction in LAPC, which is shown in Section 4.5. Table 3 shows the
four benchmark combinations, used in the experiments.

We also evaluate the LAPC technique with general multi-
threaded applications with and without producer-consumer shar-
ing patterns. In order to demonstrate that the proposed technique
can efficiently reduce energy consumption in the applications
with producer-consumer sharing patterns and does not affect
energy consumption and performance significantly even for
applications without producer-consumer sharing patterns, we
evaluated the applications which show high, medium, and low de-
grees of producer-consumer sharing patterns as analyzed in [2].
Since these benchmark applications have different degrees of
producer-consumer sharing patterns, they can be considered as
representatives of the spectrum of real applications. For the ap-
plications with the high degree of producer-consumer sharing
patterns, dedup from PARSEC [4] and water from SPLASH2 [26]
are used. For the application with the medium degree of pro-
ducer-consumer patterns, volrend, fmm, ocean, and barnes
from SPLASH2 are used. Finally, for the applications without
producer-consumer patterns, radix from SPLASH2 is included.
dedup uses a pipelined programming model in the same way as
the manually combined benchmarks. Each thread communicates
with another thread through shared buffers. water, volrend,
fmm, ocean, and barnes do not employ shared buffers, but have

single producer-multiple consumer sharing patterns: one of the
threads writes data to the address spaces shared by multiple
threads, and other threads read the data from them. On the other
hand, radix has no producer-consumer sharing pattern. As for the
input set of dedup from PARSEC, input_simmedium is used while,
as for water, volrend, fmm, ocean, barnes, and radix, 512
molecules, head-scaleddown2, 16-K particles, 130x130 grids, 8-K par-
ticles, and 1-M integers are used as their input sets, respectively.

4.3. Evaluated schemes

In this paper, 5 schemes, DECAY, AMC, SEL_DECAY, DECAY +
LAPC, and AMC + LAPC, are evaluated. DECAY and AMC employ
the cache decay technique in [15,28], respectively. The DECAY
technique uses the predefined value of the time-out threshold
and applies it to all cache blocks. The AMC technique dynamically
changes the time-out threshold cycles at runtime. In each period,
it keeps track of the number of ideal misses that occur when the
cache decay technique is not applied as well as the number of sleep
misses that are caused by the cache decay technique. When the
number of sleep misses becomes much larger than that of ideal
misses, AMC increases the time-out threshold value for the next
period. In the same way, it decreases the time-out threshold value
when the number of sleep misses becomes much smaller than that
of ideal misses. In most cases, AMC can reduce energy consumption
more than DECAY because it can employ a smaller threshold
value when its performance degradation is not significantly large.
However, it also applies the same time-out threshold value to all of
the cache blocks while the proposed technique can apply different
time-out threshold cycles for shared buffer cache blocks.

DECAY + LAPC and AMC + LAPC are the techniques that
apply the LAPC technique to the DECAY and the AMC techniques,
respectively. In these two techniques, the smaller time-out
threshold value is applied to the detected shared buffer blocks,
but the time-out threshold values of DECAY and AMC are applied
to other cache blocks. The SEL_DECAY technique [22] also turns
off cache blocks in the same way as the DECAY technique while
modified blocks are selectively turned off in order to avoid
performance degradation. In addition, it turns off cache blocks
when they are invalidated by a cache coherence transaction as
well.

4.4. Energy/performance evaluation

Fig. 6 shows the energy consumption of each technique which
is normalized to the energy consumption when no cache leakage
management technique is used. We consider both dynamic and
leakage energy consumptions of L2 caches, a shared bus, and
off-chip memory. In addition to the energy consumption of
regular cache and off-chip memory accesses, the overall energy
consumption includes the dynamic energy consumption of extra
accesses to L2 caches, a shared bus, and off-chip memory. These
extra accesses are caused when cache blocks are turned off early
due to the proposed technique or the cache decay technique
but are reused later. When the turned-off blocks are reused, the
missing blocks are brought from off-chip memory or another
processor’s cache if the cache has the data. As the extra misses
increase the execution time, the total leakage energy consumption
also increases. The additional leakage energy consumption caused
by the increased execution time is also considered. We take
into account the dynamic and the leakage energy consumption
overheads of the additional structures for the proposed technique
using the parameters obtained from CACTI 6.5 as shown in Table 2
as well.

By exploiting the characteristics of the cache blocks in CMPs,
DECAY + LAPC can reduce energy consumption by an average of
60.0% and 10.8% over baseline and DECAY, respectively. Although

1552 H. Kim, J. Kim /J. Parallel Distrib. Comput. 71 (2011) 1545-1557

EMDECAY BAMC MmSEL_DECAY MmDECAY+LAPC OAMC+LAPC

1.0
0.9

Normalized Energy Consumption

I A

& & &

Q> IS o

N 2
< <
I

(\@‘o I§'>\+ ’bcgl
X ¢
Y

Fig. 6. Normalized energy consumption.

the AMC technique can substantially reduce energy consumption
compared to the DECAY technique, it can be more improved by
the LAPC technique, and thus AMC + LAPC reduces the energy
consumption by 65.7% and 8.6% on average over baseline and AMC,
respectively. In particular, for the manually combined benchmarks
(benchl-bench4), DECAY + LAPC and AMC + LAPC reduce
energy consumption by 14.6% and 13.8%, respectively, on average
in comparison with DECAY and AMC.

benchl shows smaller energy reduction than other bench-
marks because G721 in this set has relatively larger execution
time than other benchmarks, and thus increasing the turned-off
period of the cache blocks by the cache decay technique. There-
fore, the ratio of the energy reduction of the LAPC technique to
that of the DECAY technique decreases. On the other hand, the
greatest reduction in energy consumption compared with DECAY
appears in bench3. IFFT, ADPCM, and QSORT in this program
have the relatively higher utilization of the caches than the other
programs, which means that some of the cache blocks are re-
placed before they are turned off by the cache decay technique.
The LAPC technique can aggressively turn off these cache blocks
before they are replaced, thus increasing the amount of energy
reduction. In this benchmark, DECAY + LAPC and AMC + LAPC
improve their energy consumption by up to 22.6% and 20.3% over
DECAY and AMC, respectively, because the LAPC technique can
further decrease the time-out threshold value for the detected
shared buffer cache blocks without no significant performance
loss. This indicates that the time-out threshold value cannot be
reduced further for shared buffer cache blocks even by the AMC
technique, although they can be immediately turned off without
performance loss. The amount of energy reduced by LAPC, which
iS Ejeduction in the Eq. (1), compared to the AMC technique becomes
smaller. The AMC technique reduces Tpgcay compared to when the
DECAY technique is used by dynamically changing it depending on
benchmarks. This increases Dpgcay in the AMC technique, and thus
Eeduction Of AMC + LAPC over the AMC technique becomes smaller
compared to that of DECAY + LAPC over the DECAY technique.

The proposed technique reduces the energy consumption of
general parallel benchmarks with producer-consumer sharing
patterns as well. For the applications with the high degree of
producer-consumer sharing patterns, DECAY + LAPC improves
energy consumption by 49.8% and 14.2% compared to baseline
and DECAY. In particular, as for dedup, the LAPC technique
reduces energy consumption by 35.0% and 14.1% over baseline and
DECAY, respectively. In this benchmark, each thread is executed
in a pipelined fashion where it repeatedly performs its work
with the data which it has read from shared buffers and writes
results to shared buffers after finishing the work. This is the

same way in which bench1l-bench4 benchmarks are executed.
As in the bench1-bench4 benchmarks, DECAY + LAPC reduces
energy consumption by detecting shared buffer cache blocks and
aggressively turning them off after a consumer thread reads
them. The AMC technique also shows significant energy reduction
compared to the DECAY technique since it uses different time-out
threshold values for each private L2 cache as well as dynamically
changing the value while the DECAY technique employs the same
value for all private L2 caches during runtime. However, AMC +
LAPC can reduce energy consumption by 7.0% and 14.1% more
than the AMC technique for dedup and water, respectively, by
immediately turning off the detected shared buffer cache blocks.
Even though water does not use a pipelined programming model,
the LAPC technique detects consecutive addresses that exhibit
producer-consumer sharing patterns and aggressively turns them
off.

For the applications with the medium-degree producer-
consumer sharing patterns, DECAY + LAPC can reduce the energy
consumption by 45.8% and 6.1% over baseline and DECAY. These
applications have consecutive addresses with producer-consumer
sharing patterns, but they are not as many as in the ones with the
high degree of the patterns, resulting in smaller energy reduction.
However, for fmm, DECAY + LAPC can reduce energy consumption
by up to 9.0% in comparison with the DECAY technique. AMC +
LAPC reduces energy consumption by 3% over AMC because AMC
can sufficiently reduce energy consumption over DECAY. This
energy reduction is at the cost of performance, i.e., AMC turns
off cache blocks too early, leading to the large number of extra
off-chip memory accesses. radix that has the low degree of
producer-consumer sharing patterns shows less energy reduction
than the other benchmarks. Nevertheless, the LAPC technique
shows about 2.0% of energy reduction by detecting shared variables
with these patterns although the amount of reduction is small. In
this case, the mask of the corresponding stream register becomes
Oxffffffff because it only represents one cache block.

On the other hand, the amount of the energy reduction in
the SEL_DECAY technique is about 80% of the DECAY technique
as reported in [22] since it selectively turns off modified cache
blocks to avoid invalidating the corresponding L1 cache blocks. As
aresult, it can improve the overall performance compared to other
techniques. Although it turns off L2 cache blocks when they are
invalidated by another processor, the amount of energy reduction
is still less than the LAPC technique. The LAPC technique can turn
off shared buffer cache blocks before they are invalidated if the
cache blocks are identified as one of the shared buffer cache blocks.

Fig. 7 shows the performance of the 5 techniques which
are normalized to the baseline when no leakage management

H. Kim, J. Kim /]. Parallel Distrib. Comput. 71 (2011) 1545-1557 1553

EMDECAY BAMC MmSEL_DECAY EDECAY+LAPC OAMC+LAPC

1.2

1.1

1.0

0.9 +

0.8

0.7 +

Normalized Execution Time

0.6 - =

L& R
& &P
& & F &

& &
&S

o
N O o &

o S
& & g & &

Fig. 7. Normalized performance.

EMDECAY BAMC MmSEL_DECAY M@DECAY+LAPC OAMC+LAPC

1.0

Normalized Energy Delay Product

Fig. 8. Normalized energy delay product.

technique is employed. As can be seen, when the LAPC technique
is applied to the DECAY and the AMC techniques, i.e., DECAY +
LAPC and AMC + LAPC, it incurs no significant performance loss
because the cache blocks of shared buffers are not required after
being turned off, which means that extra misses caused by turning
them off aggressively do not occur. This also indicates that our
shared buffer detection technique does not cause a significant
performance loss even though the stream registers detect more
addresses than the shared buffers used. When the turned off cache
blocks are reused due to a wrong prediction, they can be brought
from another processor’s cache if the cache has its copy, thereby
reducing the penalty of extra misses. The normalized energy delay
product is shown in Fig. 8. Since the performance degradation
caused by the LAPC technique is not significant, energy delay
product is similar to energy consumption. DECAY + LAPC and
AMC + LAPC reduce energy delay product by 10.4% and 8.2%
compared to the DECAY and the AMC techniques, respectively.

4.5. Sensitivity studies

We evaluate the energy consumption of each technique with
different sizes of caches in order to show how the proposed
technique affects energy consumption when various sizes of
caches are used. Fig. 9(a) and (b) show the energy consumptions of
benchmarks with 256 KB and 1 MB private L2 caches, respectively,
while the energy consumption in 512 KB caches is shown in Fig. 6.

As the sizes of caches become larger, the energy consumption
reduced by the DECAY technique also increases because a larger
number of cache blocks is in the idle state. In 256 KB private
L2 caches, the DECAY technique reduces energy consumption
by 38.8% on average while it reduces the energy consumption
in 512 KB and 1 MB private L2 caches by 55.1% and 72.8%,
respectively, compared to the baseline. With 256 KB caches,
DECAY-+LAPC and AMCHLAPC reduce energy consumption by 7.8%
and 6.7% over DECAY and AMC, respectively. Similarly, with 1 MB
caches, they reduce the energy consumption by 13.1% and 10.0%
compared to DECAY and AMC as well. In particular, for dedup,
DECAY + LAPC improves energy consumption by up to 31.3%
over DECAY in 1 MB caches. This shows that, even in the various
sizes of caches, the LAPC technique efficiently reduces energy
consumption over the DECAY technique, and the AMC technique
is also improved with it. The amount of energy reduction increases
as the sizes of caches become smaller. In small caches, cache blocks
are frequently replaced and thus increasing the number of Ny,
cache blocks in the Eq. (1). It increases the amount of energy
consumption reduced by LAPC because LAPC can turn off the cache
blocks which cannot be turned off in DECAY and AMC.

We also evaluate the proposed technique by varying the sizes
of shared buffers, 16 KB, 32 KB, and 64 KB, as shown in Fig. 10.
We show the normalized energy consumption with the different
sizes of caches as well. In 256 KB caches, the DECAY + LAPC
technique reduces energy consumption by 8.2%, 12.3%, and 14.3%

1554 H. Kim, J. Kim /J. Parallel Distrib. Comput. 71 (2011) 1545-1557

EMDECAY BAMC BSEL_DECAY EDACAY+LAPC OAMC+LAPC

1.0

Normalized Energy Consumption

(a) 256 KB cache.

EMDECAY EAMC M@SEL_DECAY @EPC_DECAY OAMC+PC_DECAY

Normalized Energy Consumption

(b) 1 MB cache.

Fig. 9. Normalized energy consumption varying the size of caches.

over the DECAY technique on average when shared buffers with
the sizes of 16 KB, 32 KB, and 64 KB are employed, respectively.
With these sizes of shared buffers, it reduces energy consumption
by 8.4%, 15.4%, and 17.5% over the DECAY technique, respectively,
in 512 KB caches on average. The reduction in energy consumption
shows similar patterns even when the sizes of shared buffers
become larger. However, the amount of energy reduction increases
because of the increased ratio of the number of shared buffer
cache blocks to that of other cache blocks. Furthermore, when the
sizes of shared buffers are small, a producer thread writes its data
to the same addresses of shared buffers every time it produces
the data, and thus the shared buffer cache blocks are frequently
accessed. This means that the corresponding cache blocks cannot
be turned off when their time-out threshold values are high in
DECAY and AMC. However, LAPC can turn them off by detecting
the cache blocks which belong to shared buffers. In this case,
LAPC can reduce energy consumption more by increasing N, in
the Eq. (1). On the other hand, when the sizes of shared buffers
become larger, the data produced by a producer thread is written
to the different addresses of shared buffers. Consequently, this
increases the interval time between the accesses by a producer and
a consumer to shared buffers. These cache blocks can be turned off
in DECAY and AMC, but they should wait for the time-out threshold
cycles, i.e., Tpecay in the Eq. (1), to be turned off. The LAPC technique
can turn them off earlier without waiting for Tpgcay cycles. In
this case, shared buffer cache blocks can be turned off after
waiting for only Tiapc cycles, thereby increasing Erequction Of the

Eq. (1).

Since the performance of the LAPC technique is affected by the
size of the global table employed for detecting the addresses, we
evaluated the LAPC technique by varying its size. The evaluations
are also done with different sizes of shared buffers because their
sizes affect the detection ratio of the global table. As the sizes
of shared buffers increase, the number of “ReadX” and “Read”
transactions increases. If the number of entries in a global table is
not large enough, only part of the shared buffer addresses can be
detected. Fig. 11 shows the energy consumption with the different
number of entries in the global table. LAPC_256, LAPC_512,
LAPC_1024, and LAPC_2048 indicate the LAPC techniques with
256, 512, 1024, and 2048 entries in the global table, respectively,
and all of the energy consumptions are normalized to LAPC_256.
Fig. 11(a)-(c) show the energy consumptions when the 16 KB,
32 KB, and 64 KB shared buffers are used, and Fig. 11 (d) shows
that of PARSEC and SPLASH2 parallel benchmarks.

As can be seen, by using the global table with less than 1024
entries, the reduction in energy consumption is smaller than that
of the global table with more than 1024 entries because the global
table is so small that the entry allocated by a ReadX transaction
is evicted before a Read transaction of the corresponding address
occurs on a shared bus. On the other hand, we can see that the
global table more than with 1024 entries do not provide more
advantages, which means the global table with 1024 entries is
enough to detect shared buffers with less than 64 KB. Although all
of the addresses are not detected in the global table with smaller
entries, the consecutive addresses of the shared buffers can be
detected because they have a high level of spatial locality.

H. Kim, J. Kim /]. Parallel Distrib. Comput. 71 (2011) 1545-1557 1555

mDECAY ®AMC ®SEL_DECAY BDECAY+LAPC OAMC+LAPC

0.9

0.8

0.7

0.5

0.4 -

0.3

0.2

0.1 1

Normalized Energy Consumption

0.0 1

16 KB Shared Buffer

(a) 256 KB cache.

32 KB Shared Buffer

EDECAY ®AMC ®SEL_DECAY BDECAY+LAPC OAMC+LAPC

1.0

0.9

0.8

0.7

Normalized Energy Consumption

16 KB Shared Buffer
(b) 512 KB cache.

32 KB Shared Buffer

Fig. 10. Normalized energy consumption varying the size of shared buffers.

4.6. Migration of shared buffer cache blocks

The proposed LAPC technique consists of two parts: (1) detect-
ing shared buffer address space and (2) applying an aggressive
decay technique to detected cache blocks. However, after detecting
shared buffer address space, the corresponding cache blocks could
be directly migrated to a consumer’s cache to reduce the number
of cache accesses and bus transactions instead of turning off the
detected shared buffer cache blocks earlier. We also evaluate this
option by comparing it with the DECAY and the LAPC techniques.
Since the goal of this paper is reducing power consumption, the
cache decay technique is basically applied to all cache blocks in
both the LAPC and the LAPC_MIG techniques.

In the original private L2 cache organization, when a producer
thread writes data to its shared buffer, a cache access to its local
L2 cache occurs along with a ReadX bus transaction. Subsequently,
when a consumer thread reads the data from the shared buffer,
two cache accesses such as the local and the remote ones, a Read
transaction, and a bus access to transfer the data occur. On the
other hand, if the detected cache blocks are directly migrated to a
consumer’s L2 cache while not storing them in the local L1 and L2
caches, the remote L2 cache access and the ReadX and the Read bus
transactions are not necessary because a consumer thread does not
need to access a producer’s cache to bring cache blocks. However,
the bus and the cache accesses are still needed in that the former
one is to migrate the data and the later one is to write the produced
data to a consumer’s cache. The energy consumption of the cache
accesses and the bus transactions reduced by migrating the cache
blocks is much smaller than the leakage energy consumption of a

cache block as shown in Table 2. The leakage energy consumption
of a cache block is 98 uW while the dynamic energy consumption
of a cache access is 0.12 n] and that of a bus transaction is 0.006 n].
Therefore, the energy reduction by reducing the number of these
accesses is not much larger than the energy reduction by turning
off cache blocks.

Moreover, when the detected cache blocks are directly inserted
into a consumer’s cache, they could turn on the cache blocks
which are already turned off or evict the cache blocks which are in
use, thereby increasing energy consumption as well as decreasing
performance. Fig. 12 shows the energy consumptions of LAPC and
LAPC_MIG normalized to DECAY. LAPC_MIG is the technique that
directly migrates the detected cache blocks to a consumer’s cache.
When compared to DECAY and LAPC, LAPC_MIG increases energy
consumption by 3.4% and 16.0% on average, respectively. This is
because the migrated cache blocks turn on the already turned-off
cache blocks despite the smaller energy reduction by the removed
cache access and bus transactions. The LAPC technique also slightly
increases the execution time when the cache blocks are migrated
too early. They could be evicted before being used or a consumer’s
cache blocks in use are replaced with them. As a result, when cache
block turn-off techniques are considered for reducing leakage
energy consumption, the proposed technique is a better choice.

5. Conclusions and future work

Reducing leakage energy consumption of the on-chip L2 cache
has become an important issue in designing modern CMPs

1556

WLAPC 256 BLAPC 512 DLAPC_1024 OLAPC_2048
1.0
0.9 +
0.8
0.7 1
0.6
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1
0.0 +

Normalized Energy Consumption

bench1

(a) Combined benchmarks with 16 KB shared buffer.

bench2 bench3 bench4 Average

BLAPC_256 BLAPC_512 BLAPC_1024 OLAPC_2048
1.0 q
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 4
0.0 -

Normalized Energy Consumption

bench1
(c) Combined benchmarks with 64 KB shared buffer.

bench2 bench3 bench4 Average

H. Kim, J. Kim /J. Parallel Distrib. Comput. 71 (2011) 1545-1557

WLAPC_ 256 BLAPC_512 DLAPC_1024 OLAPC_2048
1.0
0.9 +
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1
0.0 +

Normalized Energy Consumption

bench1
(b) Combined benchmarks with 32 KB shared buffer.

bench2 bench3 bench4 Average

WLAPC_256 BLAPC_512 BLAPC_1024 OLAPC_2048
1.0 q
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1
0.0 A

Normalized Energy Consumption

dedup water volrend radix

(d) PARSEC & SPLASH2 benchmarks.

Average

Fig. 11. Normalized energy consumption varying the size of a global table.

EMDECAY @LAPC OLAPC_MIG

1.2

1.0 4

0.8

0.6

0.4

0.2 A

Normalized Energy Consumption

0.0 -

benchl bench2 bench3 bench4

dedup water volrend radix average

Fig. 12. Normalized energy consumption of LAPC_MIG.

because most CMPs employ a large on-chip L2 cache to improve
performance. Although the existing cache leakage management
technique can reduce the leakage energy consumption, we
showed that exploiting knowledge about the behavior of caches,
producer-consumer sharing in this case, can significantly increase
the reduction in leakage energy. LAPC detects shared buffer
addresses and aggressively turns off L2 cache blocks belonging to
the detected shared buffers. Experimental results showed that the
proposed technique can reduce the energy consumption in the L2
caches and off-chip memory by up to 31.3% compared with the
existing cache decay technique without any loss in performance.
Our proposed technique can be extended in three ways.
First, LAPC can be implemented to support a larger number of
processors and more complex interconnections with directory-
based cache configuration although, in this version of work, LAPC is
developed based on 4 processors connected to a shared bus where
a snoop-based coherence protocol is used. Second, the proposed
leakage management technique can exploit characteristics of

multi-threaded applications with other kind of data sharing
patterns such as data parallel applications. Finally, a new leakage
management technique for a shared L2 cache can be developed also
by exploiting the characteristics of multi-threaded applications.

Acknowledgments

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Education, Science
and Technology (MEST) (No. 20110020426, No. 20110020514, No.
R33-2011-10095). The ICT at Seoul National University and IDEC
provided research facilities for this study.

References

[1] K. Banerjee, A. Mehrotra, A power-optimal repeater insertion methodology
for global interconnects in nanometer designs, IEEE Transactions on Electron
Devices 49 (11) (2002) 2001-2007.

H. Kim, J. Kim /]. Parallel Distrib. Comput. 71 (2011) 1545-1557 1557

[2] N.Barrow-Williams, C. Fensch, S. Moore, A communication characterisation of
splash-2 and parsec, in: Proceedings of the IEEE International Symposium on
Workload Characterization, 2009, pp. 86-97.

[3] B.M. Beckmann, M.R. Marty, D.A. Wood, Asr: adaptive selective replication
for CMP caches, in: Proceedings of the International Symposium on
Microarchitecture, 2006, pp. 443-454.

[4] K.-S.S.J.P. Bienia, C., K. Li, The parsec benchmark suite: characterization and
architectural implications, in: Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2008, pp. 72-81.

[5] Cacti 6.5, in: http://www.hpl.hp.com/research/cacti/.

[6] Calculating memory system power for ddr, in: Micron Technology Inc., 2005.

[7] J. Chandarlapati, M. Chaudhuri, Lemap: controlling leakage in large chip-
multiprocessor caches via profile-guided virtual address translation, in:
Proceedings of the International Conference on Computer Design, 2007,
pp. 423-430.

[8] J. Chang, G.S. Sohi, Cooperative caching for chip multiprocessors, in:
Proceedings of the International Symposium on Computer Architecture, 2006,
pp. 357-368.

[9] L.Cheng,].B.Carter, D.Dai, An adaptive cache coherence protocol optimized for
producer-consumer sharing, in: Proceedings of the International Symposium
on High Performance Computer Architecture, 2007, pp. 328-339.

[10] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: A Hard-
ware/Software Approach, Morgan Kaufmann, 1999.

[11] K. Flautner, N.S. Kim, S. Martin, D. Blaauw, T. Mudge, Drowsy caches: simple
techniques for reducing leakage power, in: Proceedings of the International
Symposium on Computer Architecture, 2002, pp. 148-157.

[12] M. Ghosh, H.S. Lee, Virtual exclusion: an architectural approach to reducing
leakage energy in caches for multiprocessor systems, in: Proceedings of
the International Conference on Parallel and Distributed Systems, 2007,
pp. 1-8.

[13] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, Mibench: a
free, commercially representative embedded benchmark suite, in: Proceed-
ings of the International Workshop on Workload Characterization, 2001,
pp. 3-14.

[14] ITRS (International Technology Roadmap for Semiconductor), in: http://public.
itrs.net.

[15] S. Kaxiras, Z. Hu, M. Martonosi, Cache decay: exploiting generational
behavior to reduce cache leakage power, in: Proceedings of the International
Symposium on Computer Architecture, 2001, pp. 240-251.

[16] H. Kim, J.H. Ahn,]J. Kim, Replication-aware leakage management in chip
multiprocessors with private 12 cache, in: Proceedings of the International
Symposium on Low Power Electronics and Design, 2010, pp. 135-140.

[17] D.Kim, S.Ha, R. Gupta, Cats: cycle accurate transaction-driven simulation with
multiple processor simulators, in: Proceedings of the Design, Automation and
Test in Europe, 2007, pp. 749-754.

[18] C.Lee, M. Potkonjak, W.H. Mangione-Smith, Mediabench: a tool for evaluating
and synthesizing multimedia and communications systems, in: Proceedings
of the International Symposium on Microarchitecture, 1997, pp. 330-335.

[19] S. Manne, A. Klauser, D. Grunwald, Pipeline gating: speculation control
for energy reduction, in: Proceedings of the International Symposium on
Computer Architecture, 1998, pp. 132-141.

[20] J.W. McPherson, Reliability challenges for 45 nm and beyond, in: Proceedings
of the Design Automation Conference, 2006, pp. 176-181.

[21] M. Monchiero, R. Canal, A. Gonzalez, Power/performance/thermal design-
space exploration for multicore architectures, IEEE Transactions on Parallel
and Distributed Systems 19 (5) (2008) 666-681.

[22] M. Monchiero, R. Canal, A. Gonzdlez, Using coherence information and decay
techniques to optimize 12 cache leakage in CMPs, in: Proceedings of the
International Conference on Parallel Processing, 2009, pp. 1-8.

[23] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, T.N. Vijaykumar, Gated-vdd: a
circuit technique to reduce leakage in deep-submicron cache memories, in:
Proceedings of the International Symposium on Low Power Electronics and
Design, 2000, pp. 90-95.

[24] M.K. Qureshi, Adaptive spill-receive for robust high-performance caching in
CMPs, in: Proceedings of the International Symposium on High Performance
Computer Architecture, 2009, pp. 45-54.

[25] V. Salapura, M. Blumrich, A. Gara, Improving the accuracy of snoop filtering
using stream registers, in: Proceedings of the Workshop on Memory
Performance: Dealing with Applications, Systems and Architecture, 2007,
pp. 25-43.

[26] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The splash-2 programs:
characterization and methodological considerations, in: Proceedings of the
International Symposium on Computer Architecture, 1995, pp. 24-36.

[27] C. Yu, P. Petrov, Latency and bandwidth efficient communication through
system customization for embedded multiprocessors, in: Proceedings of the
Design Automation Conference, 2008, pp. 766-771.

[28] H. Zhou, M.C. Toburen, E. Rotenberg, T.M. Conte, Adaptive mode control: a
static-power-efficient cache design, Transactions on Embedded Computing
Systems 2 (3) (2003) 347-372.

Hyunhee Kim received her B.S. degree in computer sci-
ence and engineering from the Chungang University,
Seoul, Korea, in 2004, and her M.S. degree in computer
science and engineering from Seoul National University,
Korea, in 2006. She is currently working toward a Ph.D.
degree at Seoul National University. Her research interests
include high-performance and low-power chip multipro-
cessor architecture and on-chip memory management.

Jihong Kim received his B.S. degree in computer science
and statistics from Seoul National University, Seoul, Korea,
in 1986, and his M.S. and Ph.D. degrees in computer sci-
ence and engineering from the University of Washington,
Seattle, WA, in 1988 and 1995, respectively. Before joining
SNU in 1997, he was a Member of Technical Staff in the
DSPS R&D Center of Texas Instruments in Dallas, Texas. He
is currently a Professor in the School of Computer Science
and Engineering, Seoul National University. His research
interests include embedded software, low-power systems,
computer architecture, and multimedia and real-time

systems.

http://www.hpl.hp.com/research/cacti/
http://public.itrs.net
http://public.itrs.net
http://public.itrs.net
http://public.itrs.net

	A leakage-aware L2 cache management technique for producer--consumer sharing in low-power chip multiprocessors
	Introduction
	Motivation
	Leakage-aware L2 cache management technique
	Overall architecture
	Shared buffer stream detection
	Adaptive cache decay implementation
	Implementation overhead

	Evaluation
	Simulation configuration
	Benchmark applications
	Evaluated schemes
	Energy/performance evaluation
	Sensitivity studies
	Migration of shared buffer cache blocks

	Conclusions and future work
	Acknowledgments
	References

