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We address the problem of energy-optimal voltage scheduling for fixed-priority hard real-time sys-
tems, on which we present a complete treatment both theoretically and practically. Although most
practical real-time systems are based on fixed-priority scheduling, there have been few research
results known on the energy-optimal fixed-priority scheduling problem. First, we prove that the
problem is NP-hard. Then, we present a fully polynomial time approximation scheme (FPTAS) for
the problem. For any ε >0, the proposed approximation scheme computes a voltage schedule whose
energy consumption is at most (1+ ε) times that of the optimal voltage schedule. Furthermore, the
running time of the proposed approximation scheme is bounded by a polynomial function of the
number of input jobs and 1/ε. Given the NP-hardness of the problem, the proposed approximation
scheme is practically the best solution because it can compute a near-optimal voltage schedule (i.e.,
provably arbitrarily close to the optimal schedule) in polynomial time. Experimental results show
that the approximation scheme finds more efficient (almost optimal) voltage schedules faster than
the best existing heuristic.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—sequencing and scheduling

General Terms: Algorithms

Additional Key Words and Phrases: Fixed-priority scheduling, real-time systems, approximation
algorithms, fully polynomial time approximation scheme, variable voltage processor, dynamic volt-
age scaling

1. INTRODUCTION

Energy consumption is one of the most important design constraints in de-
signing battery-operated embedded systems such as personal digital assis-
tants, digital cellular phones, and mobile videophones. For such systems, the
energy consumption is a critical design factor because the battery operation
time is a primary performance measure. The dynamic energy consumption E,
which dominates the total energy consumption of CMOS circuits, is given by
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E ∝ CL · Ncycle · V 2
DD, where CL is the load capacitance, Ncycle is the number

of executed cycles, and VDD is the supply voltage. Because the dynamic energy
consumption E is quadratically dependent on the supply voltage VDD, lower-
ing VDD is an effective technique in reducing the energy consumption. How-
ever, lowering the supply voltage also decreases the clock speed, because the
circuit delay TD of CMOS circuits is given by TD ∝ VDD/(VDD − VT)α [Sakurai
and Newton 1990], where VT is the threshold voltage and α is a technology-
dependent constant.

When a given job does not require the maximum performance of a VLSI sys-
tem, the clock speed (and its corresponding supply voltage) can be dynamically
adjusted to the lowest possible level that still satisfies the job’s required perfor-
mance. This is the key principle of the dynamic voltage scaling (DVS) technique.
With a recent explosive growth of the portable embedded system market, sev-
eral commercial variable-voltage processors were developed (e.g., Intel’s Xscale,
AMD’s K6–2+, and Transmeta’s Crusoe processors). Targeting these processors,
various DVS algorithms [Aydin et al. 2001; Gruian 2001; Hong et al. 1998; Kim
et al. 2002; Pillai and Shin 2001; Quan and Hu 2001, 2002; Shin and Choi 1999;
Shin et al. 2000; Yao et al. 1995] have been proposed, especially for embedded
hard real-time systems.

For hard real-time systems, the goal of voltage scheduling algorithms is
to find an energy-efficient voltage schedule with all the stringent timing con-
straints satisfied. A voltage schedule is a function that associates each time
unit with a voltage level (i.e., a clock frequency).1 In this paper, we consider
fixed-priority real-time jobs running on variable voltage processors.

1.1 Previous Work

Previous investigations on the voltage scheduling problem have focused mainly
on real-time jobs running under dynamic-priority scheduling algorithms such
as the EDF (earliest-deadline-first) algorithm [Aydin et al. 2001; Hong et al.
1998; Kim et al. 2002; Pillai and Shin 2001]. For example, the problem of
energy-optimal EDF scheduling has been well understood. For EDF job sets,
the algorithm by Yao et al. [1995] computes the energy-optimal voltage sched-
ules in polynomial time. Although the EDF scheduling policy makes the volt-
age scheduling problem easier to solve, fixed-priority scheduling algorithms
such as the RM (rate monotonic) algorithm are more commonly used in prac-
tical real-time systems due to their low overhead and predictability [Liu
2000].

Although there exist several voltage scheduling techniques proposed for
fixed-priority real-time tasks (e.g., online scheduling algorithms [Gruian 2001;
Pillai and Shin 2001; Shin and Choi 1999] and offline scheduling algorithms
[Gruian 2001; Quan and Hu 2001, 2002; Shin et al. 2000]), there have been few
research results on the optimal voltage scheduling problem for fixed-priority
hard real-time systems; neither a polynomial-time optimal voltage scheduling
algorithm nor the computational complexity of the problem is known.

1Throughout the remainder of the paper, we use the term voltage scheduling instead of DVS.
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Up to now, the only significant research result on the optimality issue of
fixed-priority voltage scheduling is the one presented by Quan and Hu [2002],
where energy-optimal voltage schedules for fixed-priority jobs are found by an
exhaustive algorithm. However, Quan and Hu did not justify their exhaustive
approach. If they had presented the computational complexity of the voltage
scheduling problem, their result would have been much more significant. Since
the worst-case complexity of Quan’s algorithm is of higher order than O(N !),
where N is the number of jobs, the algorithm is practically unusable for most
real-time applications.

Quan and Hu [2001] also proposed a polynomial-time voltage scheduling
algorithm for fixed-priority hard real-time systems, which is the best known
polynomial-time heuristic for the problem. Although efficient, being a heuristic,
this algorithm cannot guarantee the quality of the voltage schedule computed.

1.2 Contributions

In this paper, we give a complete treatment on the optimal voltage scheduling
problem for fixed-priority hard real-time systems. As with the work of Quan and
Hu [2001, 2002], we assume that the timing parameters of each job is known a
priori. Our problem is identical to the one solved by Yao et al. [1995], except that
the priority assignment is changed from the dynamic EDF assignment to the
fixed assignment. As illustrated by Quan and Hu [2001], the voltage scheduling
problem for fixed-priority tasks is more difficult to solve because the preemption
relationship among the tasks is much more complex to analyze.

First, we prove that the optimal voltage scheduling problem is NP-hard,
which implies that no optimal polynomial-time algorithm is likely to exist. Sec-
ond, we present a fully polynomial time approximation scheme for the problem.
A fully polynomial time approximation scheme (FPTAS) is an approximation
algorithm that takes any ε (>0) as an additional input and returns a solution
whose cost is at most a factor of (1+ ε) away from the cost of the optimal so-
lution, with the running time bounded by a polynomial both in the size of the
input instance and in 1/ε [Woeginger 1999]. Given the NP-hardness of the prob-
lem, the proposed approximation scheme is practically the best solution. The
proposed approximation scheme computes a near-optimal voltage schedule in
polynomial time. By changing ε, the approximation scheme can find a voltage
schedule that is provably arbitrarily close to the optimal solution.

The rest of the paper is organized as follows. In Section 2, we formulate the
problem and characterize feasible voltage schedules. We describe important
properties of an energy-optimal voltage schedule in Section 3, which provide
a basis of later proofs. In Section 4, we present the intractability result of the
problem including its NP-hardness. The FPTAS for the problem is presented in
Section 5. Experimental results are given in Section 6, and we conclude with a
summary and directions for future work in Section 7.

2. PROBLEM FORMULATION

We consider a set J = {J1, J2, . . . , J|J |} of priority-ordered jobs with J1 being
the job with the highest priority. A job J ∈ J is associated with the following
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timing parameters, which are assumed to be known offline:

—rJ : the release time of J .
—dJ : the deadline of J .
—cJ : the number of execution cycles required for J .

We use pJ to denote the priority of the job J . We assume that J has a higher
priority than J ′ if pJ < pJ ′ . In the rest of the paper, we use i instead of Ji as
a subscript of timing parameters when no confusion arises (e.g., ri, di, and ci
stand for, rJi , dJi , and cJi respectively). Note that our job model can be directly
applicable to a periodic real-time system by considering all the task instances
within a hyperperiod of periodic tasks.

Since there is a one-to-one correspondence between the processor speed and
the supply voltage, we use S(t), the processor speed, to denote the voltage sched-
ule in the rest of the paper. Given a voltage schedule, the job executed at time
t can be uniquely determined and is denoted by job(J , S, t). A voltage schedule
S(t) is said to be feasible if S(t) gives each job the required number of cycles
between its release time and deadline. (An exact characterization of a feasible
voltage schedule is given in Section 2.1.)

As with other related work [Quan and Hu 2001, 2002; Yao et al. 1995], we
assume that the processor speed can be varied continuously with a negligible
overhead both in time and power. Furthermore, we model that the power P ,
energy consumed per unit time, is a convex function of the processor speed;
given a voltage schedule S(t), the power can be written as a function of time
by P (S(t)). For simplicity, we assume that all the jobs have the same switching
activity and that P is dependent only on the processor speed.

The goal of the voltage scheduling problem is, therefore, to find a feasible
schedule S(t) that minimizes

E(S) =
∫ tf

ts

P (S(t)) dt (1)

where ts and tf are the lower and upper limits of release times and deadlines of
the jobs in J , respectively. For the rest of this paper, the energy-optimal voltage
schedule of a job set J is denoted by SJopt.

2.1 Feasibility Analysis

In this section, we derive a necessary and sufficient condition for a voltage
schedule to be feasible, which will provide a basis for the proofs in Section 3.
We first introduce some useful notations and definitions.

W (S, [t1, t2]) is used to denote the number of cycles executed under a voltage
scheduleS(t) from t1 to t2, that is, W (S, [t1, t2]) = ∫ t2

t1
S(t) dt. Among W (S, [t1, t2])

cycles, Wi(S, [t1, t2]) denotes the number of cycles between t1 and t2 used for
executing a set of jobs J1, J2, . . . , Ji whose priorities are higher than or equal to
pJi . RJ and DJ represent the sets of release times and deadlines of the jobs inJ ,
respectively, that is, RJ ={rJ |J ∈J } and DJ ={dJ |J ∈J }. TJ denotes the union
of RJ and DJ , that is, TJ = RJ ∪ DJ . Given a job set J ′ ⊆J , C(J ′) represents
the total workload of jobs in J ′, that is, C(J ′)= ∑J ∈J ′ cJ . Furthermore, IJ ′
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represents the minimum interval that includes the execution intervals of jobs
in J ′, that is, IJ ′ = [min RJ ′ , max DJ ′ ]. T J represents the Cartesian product
of [rJi , dJi ], for 1≤ i≤ |J |, that is, T J = [rJ1 , dJ1 ]× [rJ2 , dJ2 ]× · · · × [rJ|J | , dJ|J |].
Given voltage schedules S1, S2, . . . , Sn such that

Si(t)= 0 for all t /∈ [αi, βi] for all 1≤ i≤n and βi ≤αi+1 for all 1≤ i<n,

the concatenation of S1, S2, . . . , Sn is

⊕n
i=1Si =S1 ⊕ S2 ⊕ · · · ⊕ Sn

def=
n∑

i=1

Si(t).

Since jobs should be released before they can be processed, we assume
that a voltage schedule S always satisfies the constraint that for any t> 0,
W (S, [0, t])≤C({J |rJ < t}).

The condition for a voltage schedule S(t) to be feasible can be expressed as
follows:

Condition I (Feasibility Condition).
There exists a |J |-tuple ( f J1 , f J2 , . . . , f J|J |)∈ T J such that
∀1≤ i≤ |J | ∀r ∈ {t|t ∈ RJ ∧ t< f Ji }

W (S, [r, f Ji ])≥C({J |pJ ≤ pJi ∧ rJ ∈ [r, f Ji )}). (2)

For a |J |-tuple ( f J1 , f J2 , . . . , f J|J | )∈ T J , f Ji can be considered as a modified
deadline of Ji, which is equal to or precedes the original deadline dJi . (The
meaning of the |J |-tuple is further clarified in Section 3.) If S(t) satisfies Con-
dition I for a given |J |-tuple ( f J1 , f J2 , . . . , f J|J |)∈ T J , Ji completes its execution
by f Ji for all 1≤ i≤ |J |. Such |J |-tuples are said to be valid with respect to
〈J , S(t)〉. Theorem 2.1 gives a proof for the feasibility condition.

THEOREM 2.1. Condition I is a necessary and sufficient condition for S(t) to
be feasible.

PROOF. For the necessary part, suppose that S(t) is feasible, that is, Ji com-
pletes its execution at f Ji ∈ (rJi , dJi ] for all 1≤ i≤ |J |. Then, for any r ∈ RJ such
that r < f Ji , all the higher priority jobs whose release times are within [r, f Ji )
complete their executions by f Ji . So the total amount of work that should be
done within [r, f Ji ] must be greater than or equal to the sum of workload of the
jobs. Thus, we have for all 1≤ i≤ |J |:

W (S, [r, f Ji ])≥C({J |pJ ≤ pJi ∧ rJ ∈ [r, f Ji )}).
For the sufficient part, assume that Condition I is satisfied for a |J |-tuple

( f J1 , f J2 , . . . , f J|J | ). By induction on i, we prove that Ji is given its required exe-
cution cycles cJi within [rJi , f Ji ] for all 1≤ i≤ |J |. The base case holds trivially.

For the induction step, assume that the proposition holds for all
k= 1, 2, . . . , i − 1. Let r < rJi be the earliest time point in RJ such that
no lower priority jobs (i.e., Jk for k> i) are executed within [r, rJi ], that is,
W (S, [r, rJi ])=Wi−1(S, [r, rJi ]). If such r does not exist, r is set to rJi . Then, a
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higher priority job J ′ (i.e., Jl for l < i) released before r (i.e., rJ ′ < r) must com-
plete its execution before r; otherwise, since any lower priority jobs cannot be
executed within [rJ ′ , r], we have

W (S, [rJ ′ , rJi ]) = W (S, [rJ ′ , r])+W (S, [r, rJi ])
= Wi−1(S, [rJ ′ , r])+Wi−1(S, [r, rJi ])=Wi−1(S, [rJ ′ , rJi ]),

which contradicts the definition of r. Since only higher priority jobs (i.e.,
Jl for l < i) are executed within [r, rJi ], the amount of remaining workload
of the higher priority jobs (which are released within [r, rJi )) at time rJi is
C({Jk|1≤ k< i ∧ rJk ∈ [r, rJi )}) − W (S, [r, rJi ]). So we have

Wi−1(S, [rJi , f Ji ]) ≤ C( {Jk|1≤ k< i ∧ rJk ∈ [r, rJi )} ) − W (S, [r, rJi ])
+C( {Jk|1≤ k< i ∧ rJk ∈ [rJi , f Ji )} )

= C( {Jk|1≤ k< i ∧ rJk ∈ [r, f Ji )} )− W (S, [r, rJi ]). (3)

To complete the induction, we only need to show that W (S, [rJi , f Ji ]) −
Wi−1(S, [rJi , f Ji ]) is not smaller than cJi . (Note that Ji preempts any lower pri-
ority jobs.) From (3) and the assumption that Condition I is satisfied, we have

W (S, [rJi , f Ji ])−Wi−1(S, [rJi , f Ji ])
≥ W (S, [r, f Ji ]) − C( {Jk|1≤ k< i ∧ rJk ∈ [r, f Ji )} ) (from (3).)
≥ C({Jk |1≤ k≤ i ∧ rJk ∈ [r, f Ji )})
− C( {Jk|1≤ k< i ∧ rJk ∈ [r, f Ji )} ) (from (2).)

= C({Ji})= cJi .

A job set J is said to be an EDF job set if for any J, J ′ ∈J (where pJ < pJ ′ ),
dJ ≤dJ ′ , or dJ ′ ≤ rJ . When the priority assignment follows the EDF policy, we
can prove that Condition I is simplified as follows:

Condition II (EDF Feasibility Condition).
For any r ∈ RJ and d ∈ DJ (where r <d ),

W (S, [r, d ])≥C({J |[rJ , dJ ]⊆ [r, d ]}).

LEMMA 2.2. Given an EDF job set J , a voltage schedule S(t) of J is feasible
if and only if Condition II is satisfied.

PROOF. Consider a new job set J ′ = {J ′1, J ′2, . . . , J ′|J |}, where rJ ′i =
W (S, [0, rJi ]), dJ ′i =W (S, [0, dJi ]), cJ ′i = cJi , and pJ ′i = pJi for all 1≤ i≤ |J |.
Because W (S, [0, t]) is a monotonically increasing function of t, J ′ is also an
EDF job set (i.e., for any J ′i , J ′k ∈J ′, where i< k, dJ ′i ≤dJ ′k , or dJ ′k ≤ rJ ′i ). Let
S ′(t)= 1 (∀t> 0) be the voltage schedule of J ′. Then, we can easily verify that
the index of the job j ob(J , S, t) is the same as that of j ob(J ′, S ′, W (S, [0, t])).
Therefore, Ji ∈J finishes its execution by its deadline dJi under S(t) if and only
if its corresponding job J ′i ∈J ′ finishes its execution by dJ ′i (=W (S, [0, dJi ]))
under S ′.

It is well known that all the jobs in an EDF job set meet their deadlines
under a constant speed if and only if the utilization ratio for any time interval
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is less than or equal to 1 [Liu 2000]. That is, S ′ is a feasible voltage schedule of
J ′ if and only if the following is satisfied:

For any r ′ ∈ RJ ′ and d ′ ∈ DJ ′ (where r ′<d ′),
C({J |J ∈J ′ ∧ [rJ , dJ ]⊆ [r ′, d ′]})≤d ′ − r ′. (4)

Since (4) is equivalent to Condition II, Condition II is a necessary and sufficient
condition for S(t) to be a feasible voltage schedule of J .

As shown in Conditions I and II, the complexity of fixed-priority voltage
scheduling mainly comes from the inherent exhaustiveness in finding a valid
|J |-tuple. In the EDF scheduling algorithm, it is sufficient for a single |J |-tuple
of the original deadlines to be checked if it satisfies Condition II.

3. SOME PROPERTIES OF OPTIMAL SCHEDULES

In this section, we explain several properties for a feasible voltage schedule to be
an energy-optimal schedule. These properties provide a key insight in devising
a fast approximation algorithm described in Section 5. The first property, which
was proven by Quan and Hu [2001], is that an energy-optimal voltage schedule
should be a piecewise-constant function.

The existing optimal voltage scheduling algorithm by Quan and Hu is based
on an observation that if a given job set satisfies the requirement of an EDF
job set, the optimal voltage schedule can be easily computed by Yao’s “peak-
power-greedy” algorithm [Yao et al. 1995]. Simply applying Yao’s algorithm to
a fixed-priority job set may cause some jobs to miss their deadlines. However,
if the deadlines of the jobs are appropriately modified before scheduling, Yao’s
algorithm can yield a feasible optimal schedule as shown in Quan and Hu
[2002]. The efficiency of an optimal voltage scheduling algorithm is, therefore,
dependent on how efficiently the job set is modified to be an EDF job set. To give
a better insight into our approach for solving the voltage scheduling problem,
we derive an equivalent result to Quan and Hu [2002] using Conditions I and II.

3.1 Properties on |J |-Tuples

Given a |J |-tuple f= ( f J1 , f J2 , . . . , f J|J |)∈ T J , J f represents the job set
{J ′1, J ′2, . . . , J ′|J |}, where pJ ′i = pJi , cJ ′i = cJi , rJ ′i = rJi , and dJ ′i = f Ji for all 1≤
i≤ |J |. We say that a |J |-tuple f is EDF ordered if J f follows the EDF pri-
ority. Furthermore, J f is said to be EDF-equivalent to J . We first establish a
link between Conditions I and II.

LEMMA 3.1. If Condition I is satisfied for a job set J by a voltage schedule
S and an EDF-ordered |J |-tuple f= ( f J1 , f J2 , . . . , f J|J |), Condition II is satisfied
for a job set J f by S.

PROOF. For any r ∈ RJ f and d ∈ DJ f (r <d ), we have

r ∈ {t|t ∈ RJ (= RJ f ) ∧ t<d } and
d = f Ji for ∃ f Ji ∈ DJ f (={ f J1 , f J2 , . . . , f J|J | }).
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Furthermore, since f is EDF-ordered, we have

∀J ′k ∈J f s.t. rJ ′k (= rJk )∈ [r, d (= f Ji )),
dJ ′k = f Jk ≤ f Ji =d if pJ ′k ≤ pJ ′i (= pJi )
dJ ′k = f Jk > f Ji =d otherwise.

Thus, we have for all J ′k ∈J f:

pJ ′k ≤ pJ ′i ∧ rJ ′k ∈ [r, d ) ⇔ [rJ ′k , dJ ′k ]⊆ [r, d ]. (5)

Finally, by substituting d for f Ji in (2), we have

W (S, [r, d ]) ≥ C({J ∈J |pJ ≤ pJi ∧ rJ ∈ [r, d )})
= C({J ′k ∈J f |pJ ′k ≤ pJ ′i (= pJi ) ∧ rJ ′k (= rJk )∈ [r, d )})
= C({J ′ ∈J f |[rJ ′ , dJ ′ ]⊆ [r, d ]}). (from (5).)

LEMMA 3.2. If Condition II is satisfied for a job setJ f by a voltage schedule S
where f= ( f J1 , f J2 , . . . , f J|J | ) is an EDF-ordered |J |-tuple, Condition I is satisfied
for a job set J by S.

PROOF. Let r ∈ {t|t ∈ RJ ∧ t< f Ji }. Then, we have

r ∈ RJ f (= RJ ), f Ji ∈ DJ f (= { f J1 , f J2 , . . . , f J|J | }) and r < f Ji

and substituting f Ji for d in Condition II gives

W (S, [r, f Ji ])≥C({J ′ ∈J f | [rJ ′ , dJ ′ ]⊆ [r, f Ji ]}).
Since f is EDF-ordered, we have for all J ′k ∈J f (refer to the proof of Lemma
3.1.):

pJ ′k ≤ pJ ′i ∧ rJ ′k ∈ [r, f Ji ) ⇐⇒ [rJ ′k , dJ ′k ]⊆ [r, f Ji ]. (6)

Therefore, we have

W (S, [r, f Ji ]) ≥ C({J ′ ∈J f | [rJ ′ , dJ ′ ]⊆ [r, f Ji ]})
= C({J ′k ∈J f |pJ ′k ≤ pJ ′i (= pJi ) ∧ rJ ′k (= rJk )∈ [r, f Ji )})
= C({J ∈J |pJ ≤ pJi ∧ rJ ∈ [r, f Ji )}).

From Lemmas 3.1 and 3.2, we can derive the following useful theorem that
states how a feasible voltage schedule of a job set can be obtained from its
EDF-equivalent job sets.

THEOREM 3.3. Given a job set J , let FJ be the set of all feasible voltage
schedules for J . Then, FJ = ∪f∈ TEDF FJ f , where TEDF is the set of all EDF-
ordered |J |-tuples for J .

PROOF. To show that S ∈FJ ⇒S ∈ ∪f∈ TEDF FJ f , assume that Ji com-
pletes its execution at f Ji (≤ dJi ) for all 1≤ i≤ |J | under S ∈FJ . Let
f= ( f J1 , f J2 , . . . , f J|J |). Then, J f is an EDF job set. If not, we have for some
J ′k , J ′l ∈J f (where pJ ′k < pJ ′l )

rJ ′k <dJ ′l (= f Jl )<dJ ′k (= f Jk ),
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Fig. 1. An example of EDF-equivalent job sets.

which contradicts a fact that once a higher priority job (i.e., Jk) is released
during the execution of a lower priority job (i.e., Jl ), the higher priority job
completes earlier than the lower priority job (i.e., f Jk < f Jl ). Furthermore, from
Lemma 3.1, S(t) is a feasible schedule for the EDF job set J f. Thus, we have
S ∈ ∪f∈ TEDF FJ f .

Conversely, given an EDF-ordered |J |-tuple f= ( f J1 , f J2 , . . . , f J|J | ), let
S ∈FJ f be a feasible schedule for the EDF-equivalent job set J f. Then, from
Lemma 3.2, S satisfies Condition I for J . Thus, we have S ∈FJ .

COROLLARY 3.4. Given a job set J , E(SJopt)≤ E(SJ f

opt) for any EDF-equivalent
job set J f. Furthermore, there exists an EDF-equivalent job set J f such that
SJopt ≡ SJ

f

opt.

From Theorem 3.3, there is a one-to-one correspondence between feasi-
ble schedules of a fixed-priority job set J and feasible schedules of J ’s
EDF-equivalent job sets. Since the energy-optimal schedule SJ f

opt for an EDF-
equivalent job set J f can be directly computed (in polynomial time) by Yao’s
algorithm [Yao et al. 1995], the problem of finding an energy-optimal (feasible)
voltage schedule of J is reduced to the problem of finding an EDF-equivalent
job set J f (or to selecting an EDF-ordered |J |-tuple f) that minimizes E(SJ f

opt).
Figure 1 shows an example of EDF-equivalent job sets and EDF-ordered |J |-

tuples. Figure 1(a) shows the original job set J ={J1, J2}. In this example, J2
has a lower priority but earlier deadline than J1, so J is not an EDF job set.
(So Yao’s algorithm cannot be directly applied to J .) In Figures 1(b) and (c), two
job sets are shown, which are EDF-equivalent to J . The job sets {J ′1, J ′2} and
{J ′′1 , J ′′2 } are obtained by choosing (rJ1 , dJ1 ) and (dJ2 , dJ2 ) as EDF-ordered |J |-
tuples, respectively. Both job sets follow the EDF priority assignment,2 and the
optimal voltage schedule for each job set can be computed by Yao’s algorithm.
(As will be explained below, the energy-optimal voltage schedule of J is equal
to S{J

′
1, J ′2}

opt or S{J
′′
1 , J ′′2 }

opt depending on the workload of J1 and J2.)
Now, we are to restrict the search space of EDF-ordered |J |-tuples

(equivalently, EDF-equivalent job sets). First, an EDF-ordered |J |-tuple f =
( f1, f2, . . . , f |J |) does not need to be considered if for another EDF-ordered |J |-
tuple f′ = ( f ′1, f ′2, . . . , f ′|J |) (6= f), fi ≤ f ′i for all 1≤ i≤ |J |. This is because for
any voltage schedule S(t) feasible under f, S(t) is also feasible under f′. We de-
fine that an EDF-ordered |J |-tuple f (or J f) is essential if such f′ does not exist.
(The term “essential” is equivalent to the term “NAP” in Quan and Hu [2002].)

2In Figure 1(c), J ′′1 need not have an earlier deadline than J ′′2 for the job set to be an EDF job set;
dJ ′′

1
=dJ ′′

2
is sufficient for the job set to be optimally scheduled by Yao’s algorithm [Yao et al. 1995].
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Quan’s optimal algorithm [Quan and Hu 2002] finds an optimal voltage sched-
ule by exhaustively enumerating all the essential (or NAP) job sets and then
applying Yao’s algorithm for each essential job set. Our fast algorithm avoids
the exhaustiveness by carefully enumerating the essential job sets.

3.2 |J |-Permutations

It is easy to check if a |J |-tuple is EDF-ordered (or essential). On the contrary,
it is not obvious how such |J |-tuples can be enumerated. In this section, we de-
scribe how to construct EDF-ordered |J |-tuples efficiently using a permutation-
based analysis.

Given a |J |-tuple f = ( f1, f2, . . . , f |J |), let σf : {1, 2, . . . , |J |} ⇒ {1, 2, . . . , |J |}
be a permutation that maps a new tuple index when the tuple elements
are sorted in a nondecreasing order, that is, fσ−1

f (1)≤ fσ−1
f (2)≤ · · · ≤ fσ−1

f (|J |).
Ties are broken by the priority, that is, if fi = f j where i< j , σf(i)<σf( j ).
(From now on, we call such σ a |J |-permutation.) For example, let
f= ( f1, f2, f3, f4)= (4, 10, 2, 10). Then, since f3≤ f1≤ f2= f4, we have
σ (3)= 1, σ (1)= 2, and (from the tie-breaking rule) (σ (2), σ (4))= (3, 4). (Equiv-
alently, we have (σ−1(1), σ−1(2), σ−1(3), σ−1(4))= (3, 1, 2, 4).) Note that σ−1(i)
denotes the index of the ith smallest element in f, that is, fσ−1(i) is the ith
smallest element in f.

The following lemma states that there cannot exist more than one essential
|J |-tuples whose |J |-permutations are the same, that is, each essential |J |-
tuple can be uniquely addressed by its corresponding |J |-permutation (and,
obviously, vice versa).

LEMMA 3.5. For any two essential |J |-tuple f= ( f1, f2, . . . , f |J |) and
f′ = ( f ′1, f ′2, . . . , f ′|J |) (f 6= f′), σf 6= σf′ .

PROOF. Suppose σf ≡ σf′ and let i (1≤ i≤ |J |) be the largest integer such
that fσ−1

f (i) 6= f ′
σ−1

f′ (i)
, that is,

fσ−1
f (k)= f ′

σ−1
f′ (k)

(
= f ′

σ−1
f (k)

)
for all i< k< |J |. (7)

Without loss of generality, we can assume fσ−1
f (i)< f ′

σ−1
f′ (i)

. Let us consider a new
|J |-tuple f′′ = ( f ′′1 , f ′′2 , . . . , f ′′|J |), where

f ′′k =
{

f ′k k= σ−1
f (i),

fk otherwise.

From the definition of f′′, it can be easily seen that σf′′ ≡ σf ≡ σf′ . (We omit the
subscripts in the rest of the proof.) We are now to prove that f′′ is EDF-ordered,
that is, for any 1≤ j < k≤ |J |,

f ′′j ≤ f ′′k or f ′′k ≤ rJj . (8)

Since f is EDF-ordered, (8) holds for all 1≤ j < k≤ |J | except for j = σ−1(i) or
k= σ−1(i). So it remains to show that (8) holds for all 1≤ j <σ−1(i)≤ |J | and
1≤ σ−1(i)< k≤ |J |.
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Fig. 2. The algorithm to build a |J |-tuple from a |J |-permutation.

Case (a). 1≤ j <σ−1(i)≤ |J | (when Jj has a higher priority than Jσ−1(i).)
If f ′′j ≤ f ′′

σ−1(i), (8) trivially holds. So we only consider j such that f ′′j > f ′′
σ−1(i),

that is, f j (= fσ−1(σ ( j )))> f ′
σ−1(i) (> fσ−1(i)). From the definition of σ , we have

σ ( j )> i. Thus, by substituting σ ( j ) for k in Eq. (7), we have f j (= f ′′j )= f ′j .
From the assumption, f′ is EDF ordered, but we have f ′j = f j > f ′

σ−1(i). So it
must be the case that f ′

σ−1(i)≤ rJj . Therefore, we have

f ′′
σ−1(i)= f ′

σ−1(i)≤ rJj .

Case (b). 1≤ σ−1(i)< k≤ |J | (when Jk has a lower priority than Jσ−1(i).)
First, we can exclude the case when fk = fσ−1(i). Otherwise, we have

σ (k)>σ (σ−1(i)) = i. (Recall the tie-breaking rule.) But, by the definition of σ ,
f ′
σ−1(σ (k)) (= f ′k)≥ f ′

σ−1(i) and we finally have

f ′k ≥ f ′
σ−1(i)> fσ−1(i)= fk ,

which contradicts Eq. (7).
Second, consider k such that fk < fσ−1(i). f is EDF-ordered, but we have

fσ−1(i)> fk . So it must be the case that fk ≤ rJ
σ−1(i)

. Therefore, we have

f ′′k = fk ≤ rJ
σ−1(i)

.

Finally, for k such that fk > fσ−1(i), we have

f ′′
σ−1(i)= f ′

σ−1(i)≤ f ′k = fk = f ′′k .

Thus, f′′ is EDF-ordered. However, since we have

fσ−1(i)< f ′
σ−1(i)= f ′′

σ−1(i) and fk = f ′′k for all 1≤ k 6= σ−1(i)≤ |J |,
f is not essential, a contradiction. Therefore, σf 6= σf′ .

The proof of Lemma 3.5 also implies how to build a unique essential job set
for σ .

LEMMA 3.6. Given a |J |-permutation σ , the algorithm in Figure 2 finds a
unique essential |J |-tuple for σ if such a |J |-tuple exists. Otherwise, it returns
FALSE.

PROOF. First, suppose that the essential |J |-tuple for σ exists and denote
it by f′ = ( f ′1, f ′2, . . . , f ′|J |). (Note that f ′

σ−1(1)≤ f ′
σ−1(2)≤ · · · ≤ f ′

σ−1(|J |).) We are
to prove that f ′

σ−1(i)= fσ−1(i), and the algorithm does not abort in line 4 for
all i= |J |, |J | − 1, . . . , 1 by induction on i. The base case holds trivially, that
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is, f ′
σ−1(|J |)=dJ

σ−1(|J |) = fσ−1(|J |). For the induction step, assume that the propo-
sition holds for all k= |J |, |J | − 1, . . . , i+ 1. Let J H ={Jσ−1(k)|i< k≤ |J | ∧
σ−1(k)<σ−1(i)} (as in line 3 of the algorithm). Note that any job in J H has
the higher priority than Jσ−1(i) and that f ′

σ−1(i)≤dJ
σ−1(i)

and f ′
σ−1(i)≤ f ′

σ−1(i+ 1).

Case (a). J H =∅.
Suppose that f ′

σ−1(i)<dJ
σ−1(i)

and f ′
σ−1(i)< f ′

σ−1(i+1), that is,

f ′
σ−1(1)≤ · · · ≤ f ′

σ−1(i)< min
{

dJ
σ−1(i)

, f ′
σ−1(i+1)

}≤ f ′
σ−1(i+1)≤ · · · ≤ f ′

σ−1(|J |).

Let f′′ = ( f ′1, . . . , f ′
σ−1(i)−1, min{dJ

σ−1(i)
, f ′

σ−1(i+1)}, f ′
σ−1(i)+1, . . . , f ′|J |). Then, f′′ is

EDF ordered, and f′ is not essential, a contradiction. Therefore, we have

f ′
σ−1(i)= min

{
dJ

σ−1(i)
, f ′

σ−1(i+1)

}= min
{

dJ
σ−1(i)

, fσ−1(i+1)
}= fσ−1(i).

Case (b). J H 6= ∅.
For all Jσ−1(k) ∈J H , we have f ′

σ−1(i)< f ′
σ−1(k) from the definition of σ (Recall

the tie-breaking rule.), and f ′
σ−1(i)≤ rJ

σ−1(k)
since f′ is EDF-ordered. Suppose that

f ′
σ−1(i)< min{rJ |J ∈J H} , f ′

σ−1(i)<dJ
σ−1(i)

, and f ′
σ−1(i)< f ′

σ−1(i+1), that is,

f ′
σ−1(1) ≤ · · · ≤ f ′

σ−1(i)< min
({

dJ
σ−1(i)

, f ′
σ−1(i+1)

} ∪ {rJ |J ∈J H})
≤ f ′

σ−1(i+1)≤ · · · ≤ f ′
σ−1(|J |).

Let f′′ = ( f ′1, . . . , f ′
σ−1(i)−1, min({dJ

σ−1(i)
, f ′

σ−1(i+1)} ∪ {rJ |J ∈ J H}), f ′
σ−1(i)+1, . . . ,

f ′|J |). Then, it can be easily shown that f′′ is EDF-ordered. Thus, f′ is not essen-
tial, a contradiction. Therefore, we have

f ′
σ−1(i) = min

({
dJ

σ−1(i)
, f ′

σ−1(i+1)

} ∪ {rJ
∣∣J ∈J H})

= min
({

dJ
σ−1(i)

, fσ−1(i+1)
} ∪ {rJ

∣∣J ∈J H})= fσ−1(i).

Furthermore, we have for both cases

rJ
σ−1(i)

< f ′
σ−1(i)≤ min

({rJ |J ∈J H} ∪{f ′
σ−1(i+1)

})= min
({rJ |J ∈J H} ∪{ fσ−1(i+1)

})
,

and the algorithm does not abort in line 4 at iteration i, which completes the
induction.

If the algorithm does not abort, the |J |-tuple built by the algorithm is always
a correct EDF-ordered |J |-tuple, implying the existence of such |J |-tuple for
σ . Therefore, if such |J |-tuple does not exist, the algorithm eventually returns
FALSE.

If a |J |-permutation σ has the corresponding EDF-ordered |J |-tuple f, it is
said to be valid. Furthermore, if f is essential, σ is said to be essential. From
the above argument, we can establish one-to-one correspondences between
EDF-ordered |J |-tuples and valid |J |-permutations, and between essential |J |-
tuples and essential |J |-permutations. Figure 3(a) shows a job set with three
jobs, and Figures 3(b)–(d) show its EDF equivalent job sets with their |J |-
permutations. Among 3!(= 6) possible |J |-permutations, only three permuta-
tions are valid (and essential).
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Fig. 3. An example of |J |-permutations. (a) A job set and its EDF-equivalent job sets for
which (σ−1(3), σ−1(2), σ−1(1)) = (b) (2, 3, 1), (c) (2, 1, 3), and (d) (3, 2, 1), respectively. ((σ−1(3),
σ−1(2), σ−1(1))= (1, 2, 3), (1, 3, 2), and (3, 1, 2) are not valid J -permutations.)

Fig. 4. The algorithm to build a |J |-tuple from a bit-vector.

Based on the algorithm in Figure 2, we describe another way to enumerate
|J |-tuples. In the following, rJi and dJi are interpreted as symbolic values, not as
real numbers. Then, RJ ∪DJ has 2 · |J | distinct symbolic values. Furthermore,
the algorithm in Figure 2 is assumed to assign symbolic values to elements of
a |J |-tuple with the following tie-breaking rule in line 5:

(a) rJi = rJj (i< j ) : rJi < rJj , (b) dJi =dJj (i< j ) : rJi < rJj , (c) rJi =dJj : rJi <dJj .

Given a |J |-tuple f= ( f1, f2, . . . , f |J |), let ζf : RJ ∪ DJ ⇒ {0, 1} be a bit-vector
of length 2 · |J | such that

ζf(t)=
{

1 t= fk for some 1≤ k≤ |J |,
0 otherwise.

The algorithm in Figure 4 constructs a |J |-tuple from an arbitrary bit-vector
ζ : RJ ∪DJ ⇒ {0, 1}. The correctness of the algorithm can be proved in a similar
manner as the algorithm in Figure 2.
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3.3 An Alternative Formulation

The problem formulation given in Section 2 is based on the voltage scheduleS(t).
In this section, we describe an alternative formulation, based on the following
intuitive property, which states that each job runs at the same constant speed
if the voltage schedule is an optimal one.

LEMMA 3.7. For an energy-optimal voltage schedule S(t), S(t1)=S(t2) for any
t1 and t2 such that j ob(J , S, t1)= j ob(J , S, t2).

PROOF. Given an optimal schedule S(t), suppose that S(t1) 6= S(t2) for some
t1 and t2 such that job(J , S, t1)= job(J , S, t2). Given that S(t) is optimal, there
exist t ′1, t ′2, S1, S2, and 1t such that S(t)= S1 for t ′1≤ t ≤ t ′1+1t, S(t)= S2 for
t ′2≤ t ≤ t ′2+1t, and S1 6= S2. Let S(t)′ be defined by

S(t)′ =


S1+ S2

2
t ′1≤ t ≤ t ′1+1t, t ′2≤ t ≤ t ′2+1t,

S(t) otherwise.

Then, it is obvious that S(t)′ is feasible, and E(S ′)< E(S), a contradiction.

From Lemma 3.7, it can be shown that the voltage scheduling problem is
equivalent to determining the allowed execution time ai allocated to each Ji.
Given a feasible voltage schedule S, the corresponding tuple of the allowed
execution times (a1, a2, . . . , a|J |), called a time-allocation tuple, can be uniquely
determined. Conversely, given a time-allocation tuple A= (a1, a2, . . . , a|J |), the
corresponding voltage schedule SA can be uniquely constructed by assigning the
constant execution speed ci/ai to Ji. A is said to be feasible if the corresponding
voltage schedule SA is feasible.

Let us now consider the exact condition for a time-allocation tuple
A= (a1, a2, . . . , a|J |) to be feasible by rewriting Condition I in Section 2 in terms
of A.

Condition III (Feasibility Condition for Time-Allocation Tuples).
There exists a |J |-tuple ( f J1 , f J2 , . . . , f J|J |)∈ T J such that
∀1≤ i≤ |J | ∀r ∈ {t|t ∈ RJ ∧ t< f Ji }∑

Jk/pJk ≤ pJi∧rJk ∈ [r, f Ji )

ak ≤ f Ji − r. (9)

LEMMA 3.8. Condition III is a necessary and sufficient condition for A to be
feasible.

PROOF. Given a job set J ={J1, J2, . . . , J|J |} and a time-allocation tuple
A= (a1, a2, . . . , a|J |) for J , consider a new job set J ′ = {J ′1, J ′2, . . . , J ′|J |}, where
cJ ′i =ai, rJ ′i = rJi , dJ ′i =dJi , and pJ ′i = pJi for all 1≤ i≤ |J |, that is, J ′ is identical
to J except for the workload.

Let S ′(t)= 1 (∀t> 0) be the voltage schedule of J ′. Then, it is obvious
that the response time of Ji under SA is the same as that of J ′i under S ′.
Thus, A is feasible if and only if S ′ is a feasible voltage schedule for J ′.
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Fig. 5. Solution spaces for (a) an EDF job set and (b) a fixed-priority job set.

After replacing S and cJi in Condition I by S ′ and ai, respectively, we have
Condition III.

By applying the same argument to Condition II, we have the following con-
dition for EDF job sets.

Condition IV (EDF Feasibility Condition for Time-Allocation
Tuples).

For any r ∈ RJ and d ∈ DJ (where r <d ),∑
J/[rJ ,dJ ]⊆ [r,d ]

ai ≤d − r.

Now the voltage scheduling problem can be reformulated as follows:

Find a time-allocation tuple A= (a1, a2, . . . , a|J |) such that E(SA) is min-
imized subject to Condition III (or Condition IV for an EDF job set).

The energy consumption of the voltage schedule SA can be computed directly:

E(SA)=
|J |∑
i=1

ai · P (ci/ai). (10)

The set of feasible time-allocation tuples represents the solution space for
the voltage scheduling problem stated in terms of time-allocation tuples. For an
EDF job set, the solution space is specified by a conjunction of linear inequalities
that can be directly obtained from Condition IV. However, this is not the case for
a fixed-priority job set; the existential quantifier in Condition III is not always
removable. Consequently, the solution space for an EDF job set is a convex set
while the solution space for an arbitrary fixed-priority job set may not be a
convex set.

Before we present an intractability result for the voltage scheduling prob-
lem in the next section, we illustrate the inherent complexity of fixed-priority
voltage scheduling based on the results explained in this section. Figures 5(a)
and (b) show the solution spaces for an example EDF job set and an example
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fixed-priority job set, respectively. As a fixed-priority job set, we use the job
set {J1, J2} of Figure 1. As an EDF job set, we use the same job set {J1, J2}
in Figure 1 with the same timing parameters, but the priority assignment is
changed such that it follows the EDF priority assignment, that is, pJ2 < pJ1 .
For the EDF job set, we have the following constraint:

a1≤dJ1 − rJ1 ∧ a2≤dJ2 − rJ2 ∧ a1+a2≤dJ1 − rJ2 .

Similarly, we have the following constraint for the fixed-priority job set:

a1≤dJ1 − rJ1 ∧ a2≤ rJ1 − rJ2 (Figure 1(b)) ∨
a1≤dJ2 − rJ1 ∧ a1+a2≤dJ2 − rJ2 (Figure 1(c)).

In Figures 5(a) and (b), the solution spaces for the EDF job set and the
fixed-priority job set are depicted as a convex region and a concave region, re-
spectively. (Each point in the shaded regions represents a feasible schedule.) In
general, the solution space of any EDF job set with N jobs is represented by a
convex set in RN , whereas the solution space of a fixed-priority job set is repre-
sented by a concave set. Note that for EDF job sets, the objective function, the
total energy consumption, can be efficiently minimized by an optimization tech-
nique for a convex set (as in Yao’s algorithm). However, optimization problems
defined on a concave set are generally intractable.

4. INTRACTABILITY RESULT

In this section, we present some observations related to the complexity issue of
the optimal fixed-priority scheduling problem. We first show that the decision
version of the problem is NP-hard.

THEOREM 4.1. Given a job set J and a positive number K , the problem of
deciding if there is a feasible voltage schedule S(t) for J such that E(S)≤ K is
NP-hard.

PROOF. Without loss of generality, we assume that the energy consumption
(per CPU cycle) is quadratically dependent on the processor speed. That is,
the instantaneous power consumption (per time) is cubically dependent on the
processor speed, that is, P (t)=S(t)3. (The reduction can be easily modified for
other power functions.) We prove the theorem by reduction from the subset-sum
problem, which is NP-complete [Garey and Johnson 1979]:

SUBSET-SUM
INSTANCE: A finite set U, a size s : U⇒ Z+, and a positive integer B.
Question: Is there a subset U′ ⊆U such that

∑
u∈U′ s(u)= B?

Given an instance 〈U (= {u1, . . . , u|U|}), s, B〉 of the subset-sum problem, we
construct a job set J and a positive number K such that there is a voltage
schedule S(t) of J with E(S)≤ K if and only if ∃U′ ⊆U,

∑
u∈U′ s(u)= B. The

corresponding job set J consists of 2 · |U| +1 jobs as follows:

J ={J1, J2, . . . , J2·|U| +1
}
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where

pJi = i for all 1≤ i≤ 2 · |U| +1,

rJ2·i+ 1 = s(ui+1)+
i∑

j=1

3 · s(u j ), rJ2·i+ 2 =
i∑

j=1

3 · s(u j ),

dJ2·i+1 =
i+1∑
j=1

3 · s(u j ), dJ2·i+2 = 2 · s(ui+1)+
i∑

j=1

3 · s(u j ),

cJ2·i+1 = 8 · γ · s(ui+1), cJ2·i+2 = 8 · s(ui+1) for all 0≤ i≤ |U| − 1,

and

rJ2·|U|+1 = 0, dJ2·|U|+1 = B+
i∑

j=1

3 · s(u j ), cJ2·|U|+1 = 3
√

4 · B,

where γ is the unique positive solution of the following quadratic equation:

γ 2 + γ = 1+ 4
3 · 83

(
⇒ 1

2
<γ <1

)
.

Furthermore, K is set to be

K =
(

83 + γ
3

4
· 83
)
·
|U|∑
i=1

s(ui) + 2 · B.

From the construction of J , we have

rJ2·i+2 < rJ2·i+1

(= rJ2·i+2 + s(ui+1)
)
<dJ2·i+2

(= rJ2·i+1 + s(ui+1)
)

< dJ2·i+1

(=dJ2·i+2 + s(ui+1)
)
,[

rJ2·i+2 , dJ2·i+1

] ⊂ [
rJ2·|U|+1 , dJ2·|U|+1

]
for all 0≤ i≤ |U| − 1

and [
rJ2·i+2 , dJ2·i+1

] ∩ [rJ2·i′+2
, dJ2·i′+1

]=∅ for all 0≤ i 6= i′ ≤ |U| − 1.

Let κ : {0, 1}|U| ⇒ T J be a function defined by

κ((b1, b2, . . . , b|U|))= ( f1, f2, . . . , f |J |)

where

f2·i+1=dJ2·i+1 , f2·i+2= rJ2·i+1 if bi+1= 0,
f2·i+1= f2·i+2=dJ2·i+2 if bi+1= 1 for all 0≤ i≤ |U| − 1,

and

f2·|U|+1=dJ2·|U|+1 .

Then, the set of essential job sets of J is given by{
J f|f= κ(b), b∈ {0, 1}|U|}.
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To compute the energy consumption of an essential job set by Yao’s algorithm
[Yao et al. 1995], we first compare the intensity of each interval. Let

I1 = cJ2·i+2

rJ2·i+1 − rJ2·i+2

, I2= cJ2·i+1

dJ2·i+1 − rJ2·i+1

,

I3 = cJ2·i+1

dJ2·i+2 − rJ2·i+1

, I4= cJ2·i+1 + cJ2·i+2

dJ2·i+2 − rJ2·i+2

and

I5=
cJ2·|U|+1

B + δ .

Then, we have

I1= 8 · s(ui+1)
s(ui+1)

= 8> I2= 8 · γ · s(ui+1)
2 · s(ui+1)

= 4 · γ >2> 3
√

4> I5=
3
√

4 · B
B + δ

and

I4= 8 · (1+ γ ) · s(ui+1)
2 · s(ui+1)

= 4+ 4 · γ > I3= 8 · γ · s(ui+1)
s(ui+1)

= 8 · γ > I5.

So the energy consumption of SJ f

opt for f = κ((b1, b2, . . . , b|U|)) can be computed as
follows:

E
(
SJ f

opt

)= |U|∑
i=1

Ei + EL

where

Ei =


(

83 + γ
3

4
· 83
)
· s(ui)

(
= (8 · s(ui))3

s(ui)2 + (8 · γ · s(ui))3

(2 · s(ui))2

)
bi = 0,

(1+ γ )3

4
· 83 · s(ui)

(
= (8 · (1+ γ ) · s(ui))3

(2 · s(ui))2

)
bi = 1

and

EL= 4 · B3

(B+ ∑|U|i=1 bi · s(ui))2

(
= c3

J2·|U|+1

(B+ ∑|U|i=1 bi · (dJ2·i−1 − dJ2·i ))2

)
.

Since we have

(1+ γ )3

4
· 83 · s(ui) = 1+ 3 · γ + 3 · γ 2 + γ 3

4
· 83 · s(ui)

= 1+ 3 · (1+ 4/(3 · 83))+ γ 3

4
· 83 · s(ui)

=
(

83 + γ
3

4
· 83
)
· s(ui)+ s(ui),

we can rewrite E(SJ f

opt) as follows:

E
(
SJ f

opt

)= (83 + γ
3

4
· 83
)
·
|U|∑
i=1

s(ui)+ x + 4 · B3

(B + x)2
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where

x=
|U|∑
i=1

bi · s(ui).

It can be easily shown that E(SJ f

opt) has the minimum (83+ γ 3

4 ·83) ·∑|U|i=1 s(ui)+
2.B (= K ) at x= B. That is, E(SJ f

opt)≤ K if and only if

∃ (b1, b2, . . . , b|U|)∈ {0, 1}|U|,
|U|∑
i=1

bi · s(ui)= B,

which is equivalent to

∃ U′ ∈U,
∑

u∈U′
s(u)= B.

It is obvious that the transformation can be done in polynomial time. Therefore,
the problem is NP-hard.

From the NP-hardness proof, the problem seems unlikely to have polyno-
mial time algorithms that compute optimal solutions. The NP-hardness of the
problem strongly depends on the fact that extremely large input numbers are
allowed, as with some other NP-hard problems (e.g., the subset-sum problem
and the knapsack problem [Garey and Johnson 1979]). The NP-hardness in
the ordinary (but not strong) sense does not rule out possibility of existence
of a pseudopolynomial time algorithm or an FPTAS. Since our problem is an
optimization problem that handles real numbers, we focus our attention on the
FPTAS in the next section.

5. A FAST APPROXIMATION SCHEME

In this section, we present a fully polynomial time approximation scheme (FP-
TAS) for the problem. We first consider a dynamic programming formulation
that always finds the optimal solution, but may run in exponential time. Then,
the dynamic programming formulation is transformed into an FPTAS by us-
ing a standard technique, the rounding-the-input-data technique [Woeginger
1999]. The technique brings the running time of the dynamic program down
to polynomial by rounding the input data so that sufficiently close input data
are treated by a representative data [Sahni 1976]. The relative error of an ap-
proximation scheme depends on how we define the closeness; the smaller the
threshold value for the closeness, the smaller the relative error. For a smaller
error bound, however, the computation time becomes longer.

5.1 Algorithm for Optimal Solutions

We first present an exponential-time optimal algorithm based on the properties
of optimal voltage schedules described in Section 3. The exponential-time algo-
rithm essentially enumerates all the essential job sets. However, unlike Quan’s
exhaustive algorithm [Quan and Hu 2002], it enumerates the essential job sets
intelligently without actually enumerating all of them. Furthermore, it is based
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Fig. 6. An example illustrating the optimal algorithm. (a) An original job set; and (b) an es-
sential job set defined by a |J |-tuple f= ( f1, f2, . . . , f N−3, f N−2, f N−1, f N )= (d2, d2, . . . , dN−1,
rN−3, rN−3, rN−3). Jobs in each subinterval between the thick dashed lines follow the EDF pri-
ority assignment and can be optimally scheduled by Yao’s algorithm.

on dynamic programming formulation so that it can be easily transformed into
an FPTAS by the standard technique.

In formulating the problem by dynamic programming, we first identify ap-
propriate “overlapping” (or reusable) subproblems to which dynamic program-
ming can be applied iteratively. We note that the “optimal substructure” of our
problem is naturally reflected by blocking tuples, which are just sequences of
time points in TJ in strictly increasing order. (We formally define the blocking
tuples later in this section.) That is, the optimal solution of the original problem
can be built by just merging the optimal schedules of the subintervals defined
by a blocking tuple. Figure 6 shows an example job set and its corresponding
EDF-equivalent job set whose time interval is partitioned by a blocking tu-
ple (rN , rN−3, dN−1, . . . , r2, d2), which is depicted by a set of the dashed thick
lines in Figure 6(b). Note that jobs in each subinterval follow the EDF-priority
assignment.

The original problem is partitioned into subproblems by partitioning the
overall time interval into subintervals such that jobs in each subinterval follow
the EDF priority assignment. If a job is released within a subinterval with its
deadline outside the subinterval, the deadline can be modified to the end of the

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 3, August 2003.



Energy-Optimal Voltage Scheduling • 413

subinterval. Each partitioned interval can be optimally scheduled in polynomial
time by Yao’s algorithm [Yao et al. 1995]. The challenge is how to find the set
of subintervals whose optimal subschedules build an energy-optimal voltage
schedule.

5.1.1 Basic Idea: The First Example. We now explain the basic idea of
the optimal algorithm by describing the optimal algorithm on a simple but il-
lustrative job set J ={J1, J2, . . . , JN } in Figure 6(a), where ri+1< ri <di+1<di
for 1≤ i<N . (Note that if the priorities of jobs are reversed, the job set fol-
lows the EDF priority.) For this job set, an essential job set J e (such as one in
Figure 6(b)) is partitioned into J e

1 , J e
2 , . . . , J e

k such that each J e
i (1≤ i≤ k) fol-

lows the EDF priority assignment and the union Ii of execution intervals of jobs
in J e

i (i.e., Ii = ∪J ∈J e
i

[rJ , dJ ]) does not overlap with I j (= ∪J ′ ∈J e
j
[rJ ′ , dJ ′ ]) for

all 1≤ i 6= j ≤ k. To be more concrete,

for all 1≤ i< j < k, ∀J ∈J e
i , J ′ ∈J e

j , dJ ≤ rJ ′ .

Therefore, the optimal voltage schedule SJ e

opt of J e is equal to the concatenation
of the optimal voltage schedules of J e

i , that is,

SJ e

opt(t) ≡ ⊕k
i=1S

J e
i

opt(t).

Note that SJ
e
i

opt can be directly computed by Yao’s algorithm [Yao et al. 1995]
since J e

i follows the EDF priority assignment. Therefore, the energy-optimal
fixed-priority voltage scheduling problem is further reduced to the problem of
finding a partition that gives the energy-optimal voltage schedule for the whole
time interval.

In defining a partition, we use a blocking tuple. For example, assume that
f N is selected as rN−3 as in Figure 6(b). Then, both f N−1 and f N−2 should be
selected as rN−3, so that the job set becomes EDF-equivalent and, furthermore,
essential. As shown in Figure 6(b), these three jobs are separated from the
other jobs by a thick vertical line at time rN−3. These jobs constitute the first
partitioned job set J e

1 . The remaining job sets J e
2 , . . . , J e

k can be constructed by
applying the same argument. In this way, any essential job set can be parti-
tioned and represented by a blocking tuple.

Let b= (b1, b2, . . . , bl )(b1< b2< · · · < bl , bj ∈TJ ) be a blocking tuple where

∀1≤ j < l , ∃Ji s.t. bj = ri ∧ bj+1≤di.

Then, the corresponding EDF-ordered |J |-tuple f= ( f1, f2, . . . , f N ) is given by

fk = bj s.t. rk ∈ [bj−1, bj ) for all 1≤ k≤N .

We call such [bj−1, bj ] an atomic interval. For example, the intervals [rN , rN−3]
and [rN , dN ] in Figure 6(a) are atomic, but the interval [rN , dN−1] is not atomic.
(Later, we will formally define the term atomic interval in arbitrary job sets
other than this example.) Let th be the hth earliest time point in TJ , and let
Sh, g represent the energy-optimal voltage schedule defined within [th, tg ] for
the job set Jh, g defined by

Jh, g ={J ′i | rJi ∈ [th, tg )}
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where

rJ ′i = rJi , cJ ′i = cJi , pJ ′i = pJi , and dJ ′i = min{dJi , tg }.
Then, we have

E
(
SJopt

)= E(S1,|TJ |)= min


k−1∑
j=1

E(Sh j ,h j+1 )|1=h1<h2< · · · <hk = |J |

and [
th j , th j+1

]
is atomic for all j = 1, . . . , k − 1}.

Given an atomic interval [th j , th j+1 ], Sh j ,h j+1 can be directly computed by Yao’s
algorithm. In this way, the optimal voltage scheduling problem is reduced to a
variant of the subset-sum problem. That is, for such job sets as in Figure 6, our
problem can be formulated as follows:

Select a tuple (h1, h2, . . . , hk) (1 = h1< · · · <hk = |J |) of integers such that
the sum

qh1,h2 + qh2,h3 + · · · + qhk−1,hk

is minimized subject to [thi , thi+1 ] is atomic for all 1 ≤ i< k, where qh j ,h j+1

denotes E(Sh j ,h j+1 ) (which can be directly computed by Yao’s algorithm).

5.1.2 Basic Idea: The Second Example. The example job set in Figure 6
is illustrative in showing how our problem can be formulated by dynamic pro-
gramming. However, the easily partitionable structure comes from the fact the
job set follows the “reverse” EDF priority. For example, in Figure 6, since f N is
set to be rN−3, which is within the execution intervals of JN−1 and JN−2, f N−1
and f N−2 cannot be larger than f N (or rN−3) so that the modified job set should
be EDF-equivalent. Furthermore, f N−1 and f N−2 are set to be the maximum
possible value, f N , for the modified job set to be essential.

If the priority pattern is not the same as the example job set in Figure 6, the
partitioning becomes difficult. For example, the essential job sets in Figures
3(c) and (d) cannot be obtained by the partitioning procedure just explained.
In Figure 7(a), J4 has the lowest priority and the latest deadline, which makes
f4 to be d4 for all essential job sets (Figures 7(a)–(c)). Therefore, any atomic
interval (e.g., [r3, r1], [r1, d1], or [r3, d3]) contains partial workload of J4, which
we call a background workload. In the following, we first explain how to extend
the dynamic programming formulation to handle the background workload.
Then, we describe how to explore essential job sets of a given arbitrary job set
(as in Figure 3) by dynamic programming.

From Lemma 3.7, the job J4 in Figure 7 runs at the same speed if the voltage
schedule is an optimal one. For the time being, let us assume that the constant
speed is among SC={s1, s2, s3}. (For now, SC is set to be the set of all the possible
constant speeds in the optimal voltage schedule. In Section 5.2, we explain
how the set SC is selected such that the size of SC is bounded by a polynomial
function.) For each si ∈ SC, we first compute the amount of background workload
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Fig. 7. An example of background workload.

Fig. 8. An example illustrating the algorithm on a job set with background workload; (a) atomic
intervals (obtained from the job set in Figure 7(b)). The optimal schedules for two atomic inter-
vals where the speeds of background workload of J4 are (b) s1, (c) s2 and (d) s3, respectively. The
voltage schedules for overall time intervals where the speeds of J4 are (e) s1, (f) s2, and (g) s3,
respectively.

of J4 for each atomic interval, and then find the minimum-energy essential job
set (among those in Figures 7(b)–(d)) by using the similar procedure to the
previous case in Figure 6. However, unlike the previous case, we discard any
job set for which the sum of background workloads executed in overall time
interval is less than the total workload of J4.

Figure 8(a) shows the atomic intervals [r3, r1] and [r1, d1], which are obtained
from the essential job set in Figure 7(b). Figures 8(b)–(d) show the optimal
voltage schedules for the atomic intervals, where J4 runs at the speed s1, s2, and
s3, respectively. The workloads of jobs J1, J2, and J3 are denoted by c1, c2, and
c3, respectively, and the background workloads are denoted by w. The amount
of the background workload (and the resultant optimal voltage schedule) for
each atomic interval and speed can be easily computed by a slightly modified
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Fig. 9. The algorithm to build a strongly blocking tuple from a |J |-permutation.

version of Yao’s algorithm [Yao et al. 1995]. That is, when the critical interval is
selected, if the speed to be assigned (by the intensity of the critical interval) is
less than or equal to the speed of the background workload, we assign the speed
of the background workload to all the unscheduled time intervals (including
the critical interval). Then, the amount of background workload can be directly
computed as in Figures 8(b)–(d).

Once the background workload and the optimal voltage schedule are com-
puted for each atomic interval, we apply the same procedure as in the job set in
Figure 6 to find the minimum-energy essential job set and the energy-optimal
voltage schedule. In exploring the solution space, we should discard any in-
feasible schedules. Figure 8(e) shows an infeasible schedule, where J4 runs at
s1 and cannot complete its execution until its deadline. The voltage schedule
in Figure 8(g) is feasible, but not an optimal one. Thus, only the schedule in
Figure 8(f) is not removed in the pruning procedure and is compared
with another schedules obtained from the essential job sets in Figures 8(c)
and (d).

5.1.3 Putting It Altogether. We now describe the optimal algorithm for ar-
bitrary job sets based on the observations from the example job sets. First, we
formally define the terms strongly atomic interval and strongly blocking tuple.
Given a valid |J |-permutation σ , the algorithm in Figure 9 builds the corre-
sponding strongly blocking tuple bσ = (b1, b2, . . . , bk), where b1< b2< · · · < bk
and bi ∈TJ for all 1≤ i≤ k. The algorithm is identical to the algorithm in
Figure 2 except for lines 2, 8, 9, and 11. In line 8, fσ−1(i) is selected as an ele-
ment of a strongly blocking tuple if it partitions the execution interval.

Definition 5.1. Given a valid |J |-permutation σ , the tuple bσ built by the
algorithm in Figure 9 is called a strongly blocking tuple. An interval [t, t ′] is
strongly atomic if there is a strongly blocking tuple b= (b1, b2, . . . , bk) such that
[t, t ′]= [bi, bi+1] for some 1≤ i< k. Furthermore, the job set J[t,t ′] is defined by

J[t,t ′]={J ′|J ∈J , rJ ∈ [t, t ′)}
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Fig. 10. An exponential-time optimal algorithm based on strongly atomic intervals.

Fig. 11. The algorithm to build a weakly blocking tuple from a |J |-permutation.

where
rJ ′ = rJ , cJ ′ = cJ , pJ ′ = pJ , and dJ ′ = min{dJ , t ′}

is said to be induced by an interval [t, t ′].3

For the job set in Figure 3, not only [r3, r2], [r2, d2] (Figure 3(b)) and [r3, r1]
(Figure 3(c)) but also [r1, d2] (Figure 3(c)) and [r3, d3] (Figure 3(d)) are strongly
atomic. Note that the intervals [r1, d2] and [r3, d3] are not covered by the previ-
ous definition in Section 5.1.1. Furthermore, (r3, r2, d2) (Figure 3(b)), (r3, r1, d2)
(Figure 3(c)), and (r3, d3) (Figure 3(d)) are strongly blocking tuples.

Figure 10 shows an optimal algorithm that is based on strongly atomic in-
tervals. The correctness of the algorithm is proved in Appendix A.1. The al-
gorithm may work efficiently for some job sets (e.g., the job set in Figure 6).
But the running time may not be bounded by a polynomial function; for the
job set in Figure 7, there is only one strongly atomic interval [r4, d4] and
the algorithm cannot but enumerate all the essential job sets. Furthermore,
the algorithm does not have a structure suitable to be transformed into an
FPTAS. So we consider another optimal algorithm based on weakly atomic
intervals, weakly bounding tuples, and the background workload. First, we
formally define the terms based on the algorithm in Figure 11, which is

3[t, t ′] is not required to be strongly atomic.
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identical to the algorithm in Figure 9 except for the boxed code segment
(line 8).

Definition 5.2. Given a valid |J |-permutation σ , the tuple bw
σ built by the

algorithm in Figure 11 is called a weakly blocking tuple. An interval [t, t ′] is
weakly atomic if there is a weakly blocking tuple bw= (b1, b2, . . . , bk) such that
[t, t ′]= [bi, bi+1] for some 1≤ i< k. Furthermore, the job set J[t,t ′]w is defined by

J[t,t ′]w ={J ′|J ∈J , rJ ∈ [t, t ′) ∧ (∃Jh ∈J , pJh < pJ ∧ rJh = t ′ ∧ dJ ∈ [rJh , dJh ))}

where

rJ ′ = rJ , cJ ′ = cJ , pJ ′ = pJ , and dJ ′ = min{dJ , t ′}

is said to be weakly induced by an interval [t, t ′].

Furthermore, given a weakly blocking tuple bw= (b1, b2, . . . , bk) and the cor-
responding EDF-equivalent job set J ′, any job in J ′ − ∪k−1

j=1J[bj ,bj+1]w is called a
background job with respect to the weakly blocking tuple bw. The workload of
background jobs is called background workload.

Based on weakly atomic interval, we construct another optimal voltage
scheduling algorithm. Figure 12 shows the optimal algorithm that is based
on the dynamic programming formulated by weakly atomic intervals. The al-
gorithm identifies weakly atomic intervals and computes the optimal schedule
for the weakly atomic interval. (Note that jobs in a weakly atomic interval
follow the EDF priority assignment.) In computing the optimal schedule for
a weakly atomic interval, we consider the background workload, that is, the
algorithm computes the optimal schedule for each candidate background speed
in SC. Given a job set J , the algorithm first computes the set SC of candidates
for the speed of background workload. For the optimal algorithm, the set SC is
set to be

SC=
{

C(J ′)∑k−1
i=0 (tp2i+2 − tp2i+1 )

∣∣∣∣∣J ′ ⊂ J , t1< t2< · · · < tp2k , t j ∈TJ

}
.

It is obvious that the speed of the background workload in an optimal voltage
schedule is included in SC. (In the FPTAS presented in Section 5.2, the set
SC is selected such that the size of SC is bounded by a polynomial function.)
Given the optimal schedules of weakly atomic intervals, the algorithm searches
the minimum sum of the energy values of the weakly atomic intervals. The
correctness of the algorithm is proved in Appendix A.2. The worst-case running
time of the algorithm is not bounded by a polynomial function, but it can be
easily transformed into an FPTAS.

5.2 Approximation Algorithm

First, we prove a miscellaneous property that is useful in bounding the error of
our approximation algorithm.
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Fig. 12. An exponential-time optimal algorithm based on weakly atomic intervals.

LEMMA 5.3. Given a function P : R+ ⇒ R+ and a constant 0<ε<1, if

0< x1< x2<

(
1+ ε · log 2

max{η(x)|x> 0}
)
· x1,

where

η(x)= P ′(x)
P (x)

· x,

then P (x2)< (1+ ε) · P (x1).

PROOF. From the condition, we have

log x2 − log x1< log
(

1+ ε · log 2
max{η(x)|x> 0}

)
<

ε · log 2
max{η(x)|x> 0} . (11)
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Let y1= log x1 and y2= log x2. Then we have

log P (x2) − log P (x1) = log P (e y2 )− log P (e y1 )

≤ ( y2 − y1) ·max
{

d (log P (e y ))
dy

}
.

From (11) and

d (log P (e y ))
dy

= P ′(e y )
P (e y )

· e y = η(e y ),

we have

log P (x2)− log P (x1)<
ε · log 2

max{η(x)|x> 0} ·max{ η(x)|x> 0}= ε · log 2.

It follows that

P (x2)< eε·log 2 · P (x1)< elog(1+ε) · P (x1)= (1+ ε) · P (x1).

For a power function P (s)=α ·sn, we have η(s)=n. In the following, we use ρP to
denote log 2/max{η(x)|x> 0}. From Lemma 5.3, we can construct an FPTAS as
in Figure 13. The FPTAS is slightly different from the algorithm in Figure 12.
To bring the running time down to polynomial, we use S′C instead of SC:

S′C=
{

min{SC} · (1+ ε · ρP )k|k= 0, 1, . . . , l

where

min{SC} · (1+ ε · ρP )l−1< max{SC}≤ min{SC} · (1+ ε · ρP )l}.
THEOREM 5.4. APPROX VOLTAGE SCHEDULE is a fully polynomial time approx-

imation scheme for the voltage scheduling problem.

PROOF. Let s1 and s2 be elements of S′C such that s2= s1 · (1+ ε · ρP ). Given
a weakly atomic interval [ti, t j ], we have for ti ≤ t ≤ t j :

max
{
SJ[ti ,t j ]

opt (t), s2

}
≤ (1+ ε · ρP ) ·max

{
SJ[ti ,t j ]

opt (t), s1

}
.

Thus, from Lemma 5.3, we have for ti ≤ t ≤ t j

P
(

max
{
SJ[ti ,t j ]

opt (t), s2

})
≤ (1+ ε) · P

(
max

{
SJ[ti ,t j ]

opt (t), s1

})
,

which implies

E
(

max
{
SJ[ti ,t j ]

opt (t), s2

}
, [ti, t j ]

)
≤ (1+ ε) · E

(
max

{
SJ[ti ,t j ]

opt (t), s1

}
, [ti, t j ]

)
.

Let us compare E j ,k[c′] in line 21 of APPROX VOLTAGE SCHEDULE and E j ,k[c j , j+i,k]
in line 18 of OPTIMAL VOLTAGE SCHEDULE. Let s′ and s be the corresponding el-
ements in S′C and SC, respectively. Then, from the definition of S′C, we have
s′< (1 + ε · ρP ) · s, which implies E j ,k[c′]< (1 + ε) · E j ,k[c j , j+i,k]. Therefore,
E1,N < (1+ ε) ·E(SJopt).
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Fig. 13. The fully polynomial time approximation scheme.

Finally, since we have

|S′C| = 1+ dlog1+ε·ρP
(max{SC}/min{SC})e (12)

< 2+ log(max{SC}/min{SC})
ε · log(1+ ρP )

, (13)

the running time is bounded a polynomial function of |J | and 1/ε.

6. EXPERIMENTAL RESULTS

In order to evaluate how the proposed FPTAS performs, we have performed
several experiments using the FPTAS described in Figure 13. For a comparison,
we also implemented Quan’s heuristic [Quan and Hu 2001], which is currently
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Table I. Experimental Results for Three Real-World Real-Time Applications

Normalized Energy CPU Time(s)
Applications MPEG4 CNC Avionics CNC Avionics
No. of jobs 22 289 1372 289 1372

FPTAS
ε = 0.1% 1 1 1 44.71 4506.63
ε = 0.5% 1.003 1.004 1.003 11.67 1021.48
ε = 1.0% 1.006 1.008 1.007 6.12 631.15
ε = 1.5% 1.012 1.013 1.011 5.16 512.32
ε = 2.0% 1.017 1.018 1.018 3.81 313.15

Quan [Quan and Hu 2001] 1.041 1.062 1.059 4.76 580.32

the best polynomial-time voltage scheduling algorithm for fixed-priority real-
time tasks. We compared the energy efficiency and computation time between
two algorithms.4

In our experiments, we assumed that the energy consumption is quadrati-
cally dependent on the supply voltage. For a given supply voltage V , the cor-
responding clock frequency f is proportional to (VDD − VTH)α/VDD, where VTH
and α are assumed to be 0.5 V and 1.3 [Sakurai and Newton 1990].

We constructed test job sets from periodic task sets of three real-world ap-
plications: MPEG4 Videophone [Shin et al. 2001], CNC [Kim et al. 1996], and
Avionics [Locke et al. 1991]. Table I summarizes the experimental results for
these job sets. In each experiment, the execution time of each job (i.e., task in-
stance) was randomly drawn from a Gaussian distribution5 within the range of
[WCET/10,WCET] of each task. Results were normalized over the energy con-
sumption of each application scheduled by the proposed FPTAS with ε= 0.1%.
As shown in Table I the FPTAS outperforms Quan’s algorithm, spending rea-
sonable CPU times. In the experiments, actual errors were always less than
given ε’s. (We omit CPU times for MPEG4 Videophone because they are less
than 0.1.)

We also performed experiments using synthesized job sets with the varying
number of jobs from 50 to 1600. We conjectured that one of the key parame-
ters affecting the performance of Quan’s algorithm is the degree of interference
among jobs. Since the degree of interference is mainly dependent on the lengths
of the execution intervals of the jobs, we generated three classes of job sets as
follows: for the first class of job sets (Class 1), the release time and the length
of the execution interval of a job are selected under the uniform distribution
within [0,1000] and [50,100], respectively. The workload of each job was ran-
domly selected from a uniform distribution within [0.2, 1.0]. (Note that it is
sufficient to consider only the relative values of workloads, since the maxi-
mum processor speed can be always appropriately adjusted.) For the second
class of jobs (Class 2) and the third class of jobs (Class 3), we used [100,300]
and [300,500] (instead of [50,100]) for the length of the execution intervals,

4We have implemented the exhaustive optimal algorithm by Quan and Hu [2002] as well for ex-
periments. This algorithm, however, takes an excessive amount of time. For example, it took more
than a day when N = 25. Therefore, we cannot include the experimental results for this algorithm.
5With the mean m= WCET/10+WCET

2 and the standard deviation σ = WCET−WCET/10
6 .
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Table II. Experimental Results for Synthesized Jobs (Class 1)

Normalized Energy
Job sets J1 J2 J3 J4 J5 J6

No. of jobs 50 100 200 400 800 1600

FPTAS
ε = 0.1% 1 1 1 1 1 1
ε = 0.5% 1.003 1.003 1.004 1.004 1.003 1.003
ε = 1.0% 1.008 1.007 1.009 1.009 1.008 1.009
ε = 1.5% 1.013 1.012 1.012 1.014 1.014 1.014
ε = 2.0% 1.016 1.016 1.019 1.018 1.019 1.019

Quan [Quan and Hu 2001] 1.044 1.047 1.051 1.054 1.052 1.071

Table III. Experimental Results for Synthesized Jobs (Class 2)

Normalized Energy
Job sets J1 J2 J3 J4 J5 J6

No. of jobs 50 100 200 400 800 1600

FPTAS
ε = 0.1% 1 1 1 1 1 1
ε = 0.5% 1.004 1.004 1.003 1.004 1.003 1.004
ε = 1.0% 1.009 1.007 1.007 1.008 1.009 1.009
ε = 1.5% 1.013 1.012 1.014 1.014 1.013 1.014
ε = 2.0% 1.018 1.016 1.018 1.018 1.019 1.019

Quan [Quan and Hu 2001] 1.055 1.062 1.070 1.079 1.103 1.127

Table IV. Experimental Results for Synthesized Jobs (Class 3)

Normalized Energy
Job sets J1 J2 J3 J4 J5 J6

No. of jobs 50 100 200 400 800 1600

FPTAS
ε = 0.1% 1 1 1 1 1 1
ε = 0.5% 1.004 1.004 1.004 1.003 1.004 1.004
ε = 1.0% 1.009 1.007 1.007 1.009 1.008 1.009
ε = 1.5% 1.014 1.013 1.014 1.013 1.014 1.014
ε = 2.0% 1.018 1.017 1.019 1.018 1.019 1.019

Quan [Quan and Hu 2001] 1.094 1.114 1.121 1.134 1.142 1.137

respectively. Note that Class 1, Class 2, and Class 3 correspond to job sets with
low, medium, and high degrees of interference among the jobs. Tables II, III,
and IV show the experimental results for Class 1, Class 2, and Class 3. As
shown in tables, in general, the higher the degree of interferences becomes, the
larger the improvement of our algorithm over Quan’s algorithm.

7. CONCLUSIONS

We investigated the problem of energy-optimal voltage scheduling for fixed-
priority real-time systems implemented on a variable voltage processor. First,
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we proved the NP-hardness of the problem. Our complexity analysis provided
an important new insight into the problem.

Knowing the NP-hardness of the problem as the best practical solution, we
described a fully polynomial time approximation scheme for the problem. That
is, for any ε >0, the proposed approximation scheme computes a voltage sched-
ule whose energy consumption is bounded by (1 + ε) times that of the optimal
voltage schedule. Furthermore, the running time of the proposed approximation
scheme is bounded as well by a polynomial function of the number of input jobs
and 1/ε. Experimental results show that the proposed approximation scheme
runs sufficiently fast even for a small error bound (i.e., 0.5%).

While the proposed approximation scheme is efficient for general fixed-
priority job sets, the proposed scheme can be further extended in several di-
rections. For example, we are interested in devising more efficient algorithms
for more specialized job sets such as job sets from periodic task sets. In addition,
we plan to modify the proposed approximation scheme to work under a more
realistic processor model with a limited number of voltage levels and voltage
transition overheads.

APPENDIX: PROOFS

A.1 Proof of the Correctness of the Algorithm in Figure 10

We first prove some properties on strongly blocking tuples and strongly atomic
intervals. Note that for an interval [t, t ′], IJ[t,t′ ] ⊆ [t, t ′] since t ≤ rJ <dJ ≤ t ′

for all J ∈J[t,t ′]. Therefore, for a strongly blocking tuple b= (b1, b2, . . . , bk),
IJ[b1,b2] , IJ[b2,b3] , . . . , IJ[bk−1,bk ] are disjoint. Now, we prove that a job set can be par-
titioned by strongly blocking tuples as with the job set in Figure 6, so that the
formulation described in Section 5.1.1 can be extended to cover arbitrary job
sets.

LEMMA A.1. Given a job set J and an essential |J |-tuple f, J f ≡ ∪k−1
j=1J j ,

where bσf = (b1, b2, . . . , bk) and J j is an EDF-equivalent job set of J[bj ,bj+1] for all
1≤ j < k.

PROOF. LetJ f={J ′1, J ′2, . . . , J ′|J |} and letJ j ={J ′l ∈J f|rJ ′l (= rJl )∈ [bj , bj+1)}.
Then, {J1, J2, . . . , Jk−1} forms a partition of J f, that is,

J f ≡ ∪k−1
j=1J j and J j ∩ J j ′ = ∅ for all 1≤ j 6= j ′< k.

Thus, it suffices to show that J j is an EDF-equivalent job set of J[bj ,bj+1] for
all 1≤ j < k. Let i j = max{ i| fσ−1(i)= bj } for all 1≤ j ≤ k, and suppose that
dJ ′l > bj+1 for a job J ′l ∈J j . Then, we have σ (l )> i j+1, since

fσ−1(σ (l ))= fl =dJ ′l > bj+1= fσ−1(i j+1).

From line 8 of the algorithm in Figure 9, we have

bj+1= fσ−1(i j+1)≤ min
{

rJ
σ−1(k)
| i j+1< k≤ |J |}≤ rJ

σ−1(k)
|k=σ (l ) (>i j+1)= rJl ,
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which contradicts rJ ′l (= rJl )∈ [bj , bj+1). Therefore, dJ ′l ∈ [bj , bj+1] for all J ′l ∈J j .
Furthermore, J j follows the EDF priority, since it is a subset of the EDF job
set J f.

It remains to show that |J j | = |J[bj ,bj+1]| and there is a bijective function
α : J[bj ,bj+1] ⇒ J j such that

∀J ′ ∈J[bj ,bj+1], pJ ′ = pα(J ′), cJ ′ = cα(J ′) and rJ ′ = rα(J ′). (14)

For the former, we have

|J j | = |{J ′ ∈J f|rJ ′ ∈ [bj , bj+1)}| = |{J ∈J |rJ ∈ [bj , bj+1)}| = |J[bj ,bj+1]|.
For the latter, we define α such that α(J ′)= J ′′ if and only if pJ ′ = pJ ′′ . Then, it
is clear that α is a bijective function and (14) holds.

LEMMA A.2. Let S(t)= ⊕h−1
j=1 S

J[t j ,t j+1]

opt for min RJ = t1< t2< · · · < th=
max DJ (t j ∈TJ ). Then, S is a feasible voltage schedule of J . Furthermore,

E(S)=
h−1∑
j=1

E
(
S
J[t j ,t j+1]

opt

)
≥ E

(
SJopt

)
.

PROOF. Let u[t0,t ′0](t) be defined by

u[t0,t ′0](t)=
{

1 t0≤ t ≤ t ′0,

0 otherwise,

Since I[t j ,t j+1]⊆ [t j , t j+1], S is feasible if S(t) · u[t j ,t j+1](t) is a feasible schedule
of J[t j ,t j+1] for all 1≤ j <h. By definition, S(t) · u[t j ,t j+1](t)=SJ[t j ,t j+1]

opt is a feasible

schedule ofJ[t j ,t j+1] for all 1≤ j <h. E(S)= ∑h−1
j=1 E(S

J[t j ,t j+1]

opt ) holds trivially from
I[t j ,t j+1]⊆ [t j , t j+1]. Finally, since S is feasible, E(S)≥ E(SJopt).

The following lemma implies how an energy-optimal voltage scheduling prob-
lem can be partitioned into subproblems.

LEMMA A.3. Let

E1 = min


k−1∑
j=1

E
(
S
J[bj ,bj+1]

opt

)
|(b1, b2, . . . , bk) is a strongly blocking tuple.

 ,

E2 = min


h−1∑
j=1

E
(
S
J[t j ,t j+1]

opt

)
|min RJ = t1< t2< · · · < th= max DJ , t j ∈TJ

 ,

and

E3 = min


h−1∑
j=1

E
(
S
J[t j ,t j+1]

opt

)
|[t j , t j+1] is a subinterval of a strongly atomic

interval for all 1≤ j <h

}
.

Then, E(SJopt)= E1= E2= E3 .
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PROOF. Let

S1 =
{
⊕k−1

j=1 S
J[bj ,bj+1]

opt

∣∣∣(b1, b2, . . . , bk) is a strongly blocking tuple.
}

and define S2 and S3 similarly. Then, from Lemma A.2, Ei = min{E(S)|S ∈Si}
for i= 1, 2, 3. By definition, S1⊆S3⊆S2 and consequently E2≤ E3≤ E1. Fur-
thermore, E(SJopt)≤ E2 from Lemma A.2. From Theorem 3.3 and Lemma A.1,
SJopt ∈S1. Thus, we have E(SJopt)≥ E1, which implies E(SJopt)= E1= E2= E3.

From Lemma A.3, is is obvious that the algorithm in Figure 10 always com-
putes an optimal voltage schedule.

A.2 Proof of the Correctness of the Algorithm in Figure 12

We start with some lemmas to prove the correctness of the algorithm. First, note
that for an interval [t, t ′], IJ[t,t′ ]w ⊆ IJ[t,t′ ] ⊆ [t, t ′] sinceJ[t,t ′]w ⊆J[t,t ′]. Therefore, for
a weakly blocking tuple bw= (b1, b2, . . . , bk), IJ[b1,b2]w , IJ[b2,b3]w , . . . , IJ[bk−1,bk ]w are
disjoint.

LEMMA A.4. Given a weakly blocking tuple bw, let J Bbw represent the set of
background jobs with respect to bw. Then, J Bbw

1
≡ J Bbw

2
for any weakly blocking

tuples bw
1 and bw

2 .

PROOF. Let bw
1 = (b1, b2, . . . , bk) and bw

2 = (b′1, b′2, . . . , b′k′ ). Assume that
J ∈J Bbw

1
and rJ ∈ [bj , bj+1). From the definition of a background job, we have

∃k> j + 1, dJ ≥ bj+1, and pJ > max
{

pJ ′
∣∣J ′ ∈ ∪k−1

l= j+1 J[bl ,bl+1]w

}
. (15)

Suppose that J /∈ J Bbw
2
. From (15), we have

[bj+1, bj+2]⊆ (b′j ′ , b′j ′+1] for rJ ∈ [b′j ′ , b′j ′+1);

a contradiction. So J Bbw
1
⊆J Bbw

2
. Similarly, we have J Bbw

2
⊆J Bbw

1
.

Lemma A.4 states that we can specify background jobs irrespective of weakly
blocking tuples. For the rest of this paper, we use J B to represent the set of
background jobs.

LEMMA A.5. Given a job set J and an essential |J |-tuple f, let bw
σf
=

(b1, b2, . . . , bk). Then, for any weakly atomic interval [bj , bj+1] (1≤ j < k) and a
background job J, we have the following, assuming jobs are executed under SJopt.

(a) dJ ∈ [bj , bj+1): J completes its execution by bj .
(b) rJ ∈ [bj , bj+1): J completes its execution by bj+1.
(c) [bj , bj+1]⊆ [rJ , dJ ] executes its partial workload at constant speed.

Furthermore, for any interval [t, t ′]⊆ [bj , bj+1], J[t,t ′]w is an EDF job set.

PROOF. Case (a) and Case (b) are obvious from the construction of the weakly
blocking tuple bw

σf
. Case (c) follows from Lemma 3.7. Finally, suppose that J[t,t ′]w

is not an EDF job set. Then, we have

∃J, J ′ ∈J[t,t ′]w s.t. pJ > pJ ′ , dJ ∈ (rJ ′ , dJ ′ ),
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and the algorithm in Figure 11 selects rJ ′ (∈ (bj , bj+1)) as an element of bw
σf

; a
contradiction.

From Lemma A.5, we characterize the optimal schedule in terms of weakly
atomic intervals, weakly blocking tuples, and background workload.

LEMMA A.6. Given a job set J and an essential |J |-tuple f,

SJopt ≡ ⊕k−1
j=1 S

J j
opt (16)

where bw
σf
= (b1, b2, . . . , bk) and J j =J[bj ,bj+1] ∪ {Jb

j } such that

rJb
j
= bj , dJb

j
= bj+1, pJb

j
= max{pJ |J ∈J[bj ,bj+1]} + 1, and

cJb
j
= cb

j for some cb
j ≥ 0.

PROOF. From Lemma A.5, we have{
job
(
J , SJopt(t), t

) ∣∣t ∈ [bj , bj+1)
} ≡J[bj ,bj+1]w ∪ J ′ ∪ J ′′

where

J ′ = {J ′ ∈J B|rJ ′ ∈ [bj , bj+1)
}

and

J ′′ = {J ′ ∈J B|[bj , bj+1]⊆ [rJ ′ , dJ ′ ]
}
.

From Case (b) of Lemma A.5, J[bj ,bj+1]w ∪ J ′ ≡J[bj ,bj+1], and from Case (c),
J ′′ = {Jb}. So, we have

SJopt(t) · u[bj ,bj+1](t) ≡ SJ j
opt for all 1≤ j < k,

which is equivalent to (16).

From Lemma A.6, the voltage scheduling problem is reduced to the prob-
lem of finding a weakly blocking tuple bw= (b1, b2, . . . , bk) and the amount
of background workload cB

[bj ,bj+1] for each weakly atomic interval [bj , bj+1].
To find the background speed sB

[bj ,bj+1] instead of the amount of background
workload makes it possible to exploit Lemma 3.7.

LEMMA A.7. Given a weakly atomic interval [t1, t2], let J ′ =J[t1,t2] ∪ {Jb},
where

rJb = t1, dJb = t2, pJb = max{pJ |J ∈J[t1,t2]} + 1, and cJb = cB
[t1,t2] (> 0),

and let sB
[t1,t2] be the constant speed of Jb under SJ ′opt. Then,

SJ ′opt(t)=
 S

J[t1,t2]

opt (t) t s.t. SJ[t1,t2]

opt (t)> sB
[t1,t2],

sB
[t1,t2] t s.t. SJ[t1,t2]

opt (t)≤ sB
[t1,t2].

Furthermore, sB
[t1,t2] strictly increases as cB

[t1,t2] increases, and vice versa.

PROOF. From Lemmas A.5 and A.6, both J[t1,t2] and J ′ follow the EDF
priority and their optimal voltage schedules are obtained by Yao’s algorithm
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[Yao et al. 1995]. For an interval [t ′1, t ′2] ⊂ [t1, t2] such that S
J[t′

1
,t′

2
]

opt (t)> sB
[t ′1,t ′2], Yao’s

algorithm selects the same speed for SJ ′opt(t). For the other intervals, SJ ′opt(t)= sJb

since [t1, t2]⊆ [rJb , dJb ].
Because W (SJ ′opt, [t1, t2]) strictly increases as sB

[t1,t2] increases, and cB
[t1,t2]=

W (SJ ′opt, [t1, t2]) − W (SJ[t1,t2]

opt , [t1, t2]), cB
[t1,t2] increases as sB

[t1,t2] increases. Hence,
it follows that sB

[t1,t2] increases as cB
[t1,t2] increases (and vice versa).

Definition A.8. Given a job set J and background workload c, the job set
J with background workload c is defined as

J [c] def= J ∪ {Jb} where rJb = RJ , dJb = DJ ,
pJb = max{pJ |J ∈J } + 1, and cJb = c.

Furthermore, given a job set J [c], the constant speed of background workload
under SJ [c]

opt is called a background speed of J [c] and is denoted by BS(J , c).

The following lemma is an extension of Lemma A.7 for arbitrary intervals.

LEMMA A.9. Given a job set J [c]

SJ [c]
opt ≡ ⊕k−1

j=1 S
J[bj ,bj+1][c j ]
opt for b1, . . . , bk ∈ TJ , b1< · · · < bk such that

c=
k−1∑
j=1

c j and BS(J[bj ,bj+1], c j )= BS(J[bj ′ ,bj ′+1], c j ′ ) for all 1≤ j 6= j ′< c j .

PROOF. Directly from Lemmas A.6 and 3.7.

Along with Lemma A.9, the following lemma implies how the problem can
be reduced to a dynamic programming formulation.

LEMMA A.10. Given ti, t j , tm ∈ TJ , where ti < tm≤ t j , let

J B
[ti ,t j ]w =J[ti ,t j ]w ∪ {J ∈J B|[rJ , dJ ]⊆ [ti, t j ]}

and

cB
[ti ,tm]=C({J ∈J B|rJ ∈ [ti, tm) ∧ dJ ∈ [tm, t j ]}),

and let S [ti ,t j ]
opt represent S

J B
[ti ,t j ]w

opt . Then,

S [ti ,t j ]
opt ∈

{
S
J[ti ,tm]w [cB

[ti ,tm]]

opt ⊕ S [tm,t j ]
opt

∣∣∣∣SJ[ti ,tm]w [cB
[ti ,tm]]

opt is feasible for J B
[ti ,tm]w

}
.

PROOF. If all the jobs in {J ∈J B|[rJ , dJ ]⊆ [ti, t j ]} run at the same

speed under S [ti ,t j ]
opt , S [ti ,t j ]

opt ≡S
J[ti ,t j ]w [cB

[ti ,t j ]]

opt . Otherwise, there must exist
tm ∈ T{J ∈J B |[rJ ,dJ ]⊆ [ti ,t j ]} (⊆ TJ ) such that all the jobs in {J ∈J B|rJ ∈ [ti, tm) ∧
dJ ∈ [tm, t j ]} finish their executions by tm with the same constant speed and
all the jobs in {J ∈J B|[rJ , dJ ]⊆ [tm, tl ]} are not executed before tm under S [ti ,t j ]

opt .

Therefore, we have S [ti ,t j ]
opt ≡ S

J[ti ,tm]w [cB
[ti ,tm]]

opt ⊕S [tm,t j ]
opt , where S

J[ti ,tm]w [cB
[ti ,tm]]

opt is feasible
for J B

[ti ,tm]w .
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COROLLARY A.11. Let E [ti ,t j ]
opt denote E(S [ti ,t j ]

opt ) where S [ti ,t j ]
opt is defined as in

Lemma A.10. Then,

E [ti ,t j ]
opt = min

({
E
(
S
J[ti ,tm]w [cB

[ti ,tm]]

opt

)
+ E [tm,t j ]

opt

∣∣∣∣tm ∈ TJ , ti < tm< tk ,

S
J[ti ,tm]w [cB

[ti ,tm]]

opt is feasible for J B
[ti ,tm]w

})
.

The correctness of the algorithm in Figure 12 directly follows from Lemma
A.10 and Corollary A.11.
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