
A First Step Towards

Time Optimal Software Pipelining of

Loops with Control Flows

Han-Saem Yun1, Jihong Kim1, and Soo-Mook Moon2

1 School of Computer Science and Engineering
2 School of Electrical Engineering

Seoul National University, Seoul, Korea

Abstract. We address the problem of time optimal software pipelining

of loops with control
ows, one of the most di�cult open problems in the

area of parallelizing compilers. We present a necessary condition for loops

with control
ows to have equivalent time optimal programs, generalizing

the result by Schwiegelshohn et al., which has been the most signi�cant

theoretical result on the problem. As part of the formal treatment of the

problem, we propose a new formalization of software pipelining, which

provides a basis of our proof as well as a new theoretical framework

for software pipelining research. Being the �rst generalized result on the

problem, our work described in this paper forms an important �rst step

towards time optimal software pipelining.

1 Introduction

Software pipelining is a loop parallelization technique for machines that exploit

instruction-level parallelism (ILP) such as superscalar or VLIW processors. It

transforms a sequential loop so that new iterations can start before preceding

ones �nish, thus overlapping the execution of multiple iterations in a pipelined

fashion. Since most of the program execution time is spent in loops, much e�ort

has been given to developing various software pipelining techniques.

One of the important theoretical open problems in software pipelining is how

to test if a loop with control
ows has its equivalent time optimal program or

not. A program is time optimal if every execution path p of the program runs

in its minimum execution time determined by the length of the longest data

dependence chain in p [1]. If decidable, time optimality can be used as a useful

measure in evaluating (or improving) existing software pipelining algorithms.

Although there were several related research investigations [2{4] on the prob-

lem of time optimal software pipelining of loops with control
ows, there have

been few signi�cant theoretical results published. The work by Schwiegelshohn

et al. [1] is the best known and most signi�cant result so far, which simply illus-

trated that, for some loops with control
ows, there cannot exist time optimal

parallel programs. Their work lacks a formalism required to develop generalized

results. To the best of our knowledge, since the work by Schwiegelshohn et al.

was published, no further research results on the problem has been reported, pos-

sibly having been discouraged by the pessimistic result by the Schwiegelshohn

et al.'s work.

In this paper, we describe a necessary condition for loops with control
ows

to have equivalent time optimal programs. Our result is the �rst general theo-

retical result on the problem, and can be considered as a generalization of the

Schwiegelshohn et al.'s result. In order to prove the necessary condition in a

mathematically concrete fashion, we propose a new formalization of software

pipelining, which provides a basis of our proof. The proposed formalization of

software pipelining has its own signi�cance in that it provides a new theoretical

framework for software pipelining research.

We believe that the work described in this paper forms an important �rst step

towards time optimal software pipelining. Although we do not formally prove

in the paper, we strongly believe that the necessary condition described in this

paper is also the su�cient condition for time optimal programs. Our short-term

research goal is to verify this claim so that a given loop with control
ows can be

classi�ed depending on the existence of time optimal program. Ultimately, our

goal is to develop a time optimal software pipelining algorithm for loops that

satisfy the condition.

The rest of the paper is organized as follows. In Sect. 2, we brie
y review prior

theoretical work on software pipelining. We explain the machine model assump-

tions and program representation in Sect. 3. Section 4 discusses the dependence

model. A formal description of software pipelining is presented in Sect. 5 while

the proof of a necessary condition is provided in Sect. 6. We conclude with a

summary and directions for future work in Sect. 7.

2 Related Work

For loops without control
ows, there exist several theoretical results [5{9]. When

resource constraints are not present, both the time optimal schedule and the rate

optimal one can be found in polynomial time [5, 6]. With resource constraints, the

problem of �nding the optimal schedule is NP-hard in its full generality [6] but

there exist approximation algorithms that guarantee the worst case performance

of roughly twice the optimum [6, 9].

Given su�cient resources, an acyclic program can be always transformed

into an equivalent time optimal program by applying list scheduling to each

execution path and then simultaneously executing all the execution paths par-

allelized by list scheduling. When resources are limited, de�nitions of time op-

timality may be based on the average execution time. For acyclic programs,

Gasperoni and Schwiegelshohn de�ned an optimality measure based on the

execution probability of various execution paths and showed that a general-

ized list scheduling heuristic guarantees the worst case performance of at most

2�1=m+(1�1=m) �1=2 �dlog2me times the optimum [10] where m is the number

of operations that can be executed concurrently. For loops with control
ows,

measures based on the execution probability of paths is not feasible, since there

are in�nitely many execution paths.

2

r0 := r1
cc0 := (r1==0)

L0

if cc0
if cc1

L1

L2

L3:

store(r2,r1)
store(r2,r0)

Fig. 1. A tree VLIW instruction

There are few theoretical results for loops with control
ows, and, to the best

of our knowledge, only two results [1, 11] have been published. The work by Uht

[11] proved that the resource requirement necessary for the optimal execution

may increase exponentially for some loops with control
ows. The Uht's result,

however, is based on an idealized hardware model which is not directly rele-

vant to software pipelining. The work by Schwiegelshohn et al. [1], which is the

most well-known theoretical result on time optimal programs, showed that there

are some loops for which no equivalent time optimal programs exist. Although

signi�cant, their contribution lacks any formal treatment of the time optimal

software pipelining. For example, they do not formally characterize conditions

under which a loop does not have an equivalent time optimal program.

3 Preliminaries

3.1 Architectural Requirements

In order that the time optimality is well de�ned for loops with control
ows,

some architectural assumptions are necessary. In this paper, we assume the fol-

lowing architectural features for the target machine model: First, the machine

can execute multiple branch operations (i.e., multiway branching [12]) as well as

data operations concurrently. Second, it has an execution mechanism to commit

operations depending on the outcome of branching (i.e, conditional execution

[13]). The former assumption is needed because if multiple branch operations

have to be executed sequentially, time optimal execution cannot be de�ned. The

latter one is also indispensable for time optimal execution, since it enables to

avoid output dependence of store operations which belong to di�erent execution

paths of a parallel instruction as pointed out by Aiken et al. [14].

As a speci�c example architecture, we use the tree VLIW architecture model

[3, 15], which satis�es the architectural requirements described above. In this ar-

chitecture, a parallel VLIW instruction, called a tree instruction, is represented

by a binary decision tree as shown in Fig. 1. A tree instruction can execute si-

multaneously ALU and memory operations as well as branch operations. The

branch unit of the tree VLIW architecture can decide the branch target in a

single cycle [12]. An operation is committed only if it lies in the execution path

determined by the branch unit [13].

3.2 Program Representation

We represent a sequential program Ps by a control
ow graph (CFG) whose

nodes are primitive machine operations. If the sequential program Ps is paral-

3

r0 := load(r0)

cc0 := (r0==0)

if cc0

r0 := load(r0)

cc0 := (r0==0)

r1 := load(r0)

if cc0

r1 := load(r0)

r0 := r1
cc0 := (r0==0)

r0 := load(r0)

cc0 := (r0==0)
r1 := load(r0)

if cc0r0 := r1
cc0 := (r1==0)

r1 := load(r1)

L1:

L2:

L0:

L1

L2

L2

L3

(c)(a) (b)

Fig. 2. (a) A sequential program, (b) a parallel tree VLIW program, and (c) a parallel

program in the extended sequential representation

lelized by a compiler, a parallel tree VLIW program Ptree is generated. While

Ptree is the �nal output from the parallelizing compiler for our target architec-

ture, we represent the parallel program in the extended sequential representation

for the description purpose. Under the extended sequential representation, both

sequential programs and parallel programs are described using the same nota-

tions and de�nitions used for the sequential programs. Compared to sequential

programs, parallel programs include the additional information on operation

grouping. Figure 2. (a) shows an input sequential program Ps and Fig. 2. (b)

shows its corresponding parallel tree VLIW program Ptree. Using the extended

sequential representation, Ptree is represented by Fig. 2. (c). The parallel pro-

gram shown in Fig. 2. (c) is based on a sequential representation except that it

has the operation grouping information indicated by shaded regions. The opera-

tions belonging to the same group (i.e., the same shaded region) are executed in

parallel. A parallel tree VLIW program can be easily converted into the parallel

program in the extended sequential representation with some local transforma-

tion on copy operations, and vice versa [15].

3.3 Basic Terminology

A program1 is represented as a triple hG = (N;E) ; O ; � i. (This representation

is due to Aiken et al. [14].) The body of the program is a CFG G which consists

of a set of nodes N and a set of directed edges E. Nodes in N are categorized

into assignment nodes that read and write registers or global memory, branch

nodes that a�ect the
ow of control, and special nodes, start and exit nodes. The

execution begins at the start node and the execution ends at the exit nodes. E

represents the possible transitions between the nodes. Except for branch nodes

and exit nodes, all the nodes have a single outgoing edge. Each branch node has

two outgoing edges while exit nodes have no outgoing edge.

O is a set of operations that are associated with nodes in N . The operation

associated with n 2 N is denoted by op(n). More precisely, op(n) represents

1 Since a parallel program is represented by the extended sequential representation,

the notations and de�nitions explained in Sect. 3.3 and Sect. 4.1 apply to parallel

programs as well as sequential programs.

4

Fig. 3. An execution path in a parallel program

opcode only; Constant �elds and register �elds are not included in op(n). With-

out loss of generality, every operation is assumed to write to a single register.

We denote by regW(n) the register to which n writes and by regsR(n) a set of

registers from which n reads .

A con�guration is a pair hn; si where n is a node in N and s is a store (i.e.,

a snapshot of the contents of registers and memory locations). The transition

function �, which maps con�gurations into con�gurations, determines the com-

plete
ow of control starting from the initial store. Let n0 be the start node and

s0 an initial store. Then, the sequence of con�gurations during an execution is

hhn0; s0i; � � � ; hni; sii; � � � ; hnt; stii where hni+1; si+1i = �(hni; sii) for 0 � i < t.

A path p ofG is a sequence hn1; � � � ; nki of nodes inN such that (ni; ni+1) 2 E

for all 1 � i < k. For a given path p, the number of nodes in p is denoted by

jpj and the i-th (1 � i � jpj) node of p is addressed by p[i]. A path q is said

to be a subpath of p, written q v p, if there exists j (0 � j � jpj � jqj) such

that q[i] = p[i + j] for all 1 � i � jqj. For a path p and i; j (1 � i � j � jpj),

p[i; j] represents the subpath induced by the sequence of nodes from p[i] up to

p[j]. Given paths p1 = hn1; n2; � � � ; nki and p2 = hnk; nk+1; � � � ; nli, p1 � p2 =

hn1; n2; � � � ; nk; nk+1; � � � ; nli denotes the concatenated path between p1 and p2.

A path p forms a cycle if p[1] = p[jpj] and jpj > 1. For a given cycle c, ck denotes

the path constructed by concatenating c with itself k times. Two paths p and

q are said to be equivalent, written p � q, if jpj = jqj and p[i] = q[i] for all

1 � i � jpj.

A path from the start node to one of exit nodes is called an execution path

and distinguished by the superscript e (e.g., pe). Each execution path can be

represented by an initial store with which the control
ows along the execution

path. Suppose a program P is executed with an initial store s0 and the sequence

of con�gurations is written as hhn0; s0i; hn1; s1i; � � � ; hnf ; sf ii, where n0 denotes

the start node and nf one of exit nodes. Then ep(P ; s0) is de�ned to be the

execution path hn0; n1; � � � ; nf i. (ep stands for execution path.) Compilers com-

monly performs the static analysis under the assumption that all the execution

paths of the program are executable, because it is undecidable to check if an

arbitrary path of the program is executable. In this paper, we make the same

assumption, That is, we assume 8p
e in P , 9 s such that p

e
� ep(P ; s).

5

It may incur some confusion to de�ne execution paths for a parallel program

because the execution of the parallel program consists of transitions among par-

allel instructions each of which consists of several nodes. With the conditional

execution mechanism described in Sect. 3.1, however, we can focus on the unique

committed path of each parallel instruction while pruning uncommitted paths.

Then, like a sequential program, the execution of a parallel program
ows along

a single thread of control and corresponds to a path rather than a tree. For

example, in Fig. 3, the execution path of a parallel program is distinguished by

a thick line.

Some attributes such as redundancy and dependence should be de�ned in a

ow-sensitive manner because they are a�ected by control
ows. Flow-sensitive

information can be represented by associating the past and the future control

ow with each node. Given a node n and paths p1 and p2, the triple hn; p1; p2i is

called a node instance if n = p1[jp1j] = p2[1]. That is, a node instance hn; p1; p2i

de�nes the execution context in which n appears in p1�p2. In order to distinguish

the node instance from the node itself, we use a boldface symbol like n for the

former. The node component of a node instance n is addressed by node(n). A

trace of a path p, written t(p), is a sequence hn1;n2; � � � ;njpji of node instances

such that ni = hp[i]; p[1; i]; p[i; jpj]i for all 1 � i � jpj. The i-th component

of t(p) is addressed by t(p)[i] and the index of a node instance n in the trace

t(p) is represented by pos(n). For the i-th node instance ni of t(p) whose node

component is a branch node, a boolean-valued attribute dir is de�ned as follows:

dir(ni) =

�
T if p[i+ 1] is the T-target successor of p[i] ,

F otherwise .

Some of node instances in parallel programs are actually used to a�ect the

control
ow or the �nal store while the others are not. The former ones are said

to be e�ective and the latter ones redundant. A node is said to be non-speculative

if all of its node instances are e�ective. Otherwise it is said to be speculative.

These terms are further clari�ed in Sect. 5.

4 Dependence Model

Let alone irregular memory dependences, existing dependence analysis tech-

niques cannot model true dependences accurately mainly because true depen-

dences are detected by conservative analysis on the closed form of programs. In

Sect. 4.1 we introduce a path-sensitive dependence model to represent precise

dependence information. In order that the schedule is constrained by true de-

pendences only, a compiler should overcome false dependences. We explain how

to handle the false dependences in Sect. 4.2

4.1 True Dependences

With the sound assumption of regular memory dependences, true dependence

information can be easily represented for straight line loops thanks to the pe-

riodicity of dependence patterns. For loops with control
ows, however, this is

6

6

5

7

9

8

11

10

x = ...

z = f(x)
2

3 4

5

1
x = ...

x = ...

z = f(x)

(a) (b)

Fig. 4. Path-sensitive dependence examples

not the case and the dependence relationship between two nodes relies on the

control
ow between them as shown in Fig. 4. In Fig. 4. (a), there are two paths,

p1 = h1; 2; 3; 5i and p2 = h1; 2; 4; 5i, from node 1 to node 5. Node 5 is dependent

on node 1 along p1, but not along p2. This ambiguity cannot be resolved unless

node 1 is splitted into distinct nodes to be placed in each path. In Fig. 4. (b),

node 7 is �rst used after k iterations of c1 along p3 �c
k
1 �p4, where p3 = h7; 9; 11i,

p4 = h5; 10i and c1 = h5; 6; 8; 9; 11; 5i. However, this unspeci�ed number of itera-

tions, k, cannot be modeled by existing techniques; That is, existing techniques

cannot model the unspeci�ed dependence distance. In order to model this type of

dependence, it is necessary to de�ne the dependence relation on node instances

rather than on nodes themselves. The dependences between node instances car-

ried by registers are de�ned as follows.

De�nition 1. Given a path p and i; j (1 � i < j � jpj), t(pe)[j] is said to be

dependent on t(pe)[i], written t(pe)[i] � t(pe)[j] , if

regW(pe[i]) 2 regsR(p
e[j]) and

regW(pe[k])) 6= regW(pe[i]) for all i < k < j:

The relation � models true dependence along pe, which corresponds to actual

de�nition and uses of values during execution. The relation � precisely captures

the
ow of values through an execution of a program. From De�nition 1, we can

easily verify the following property on the relation � : For execution paths pe1
and p

e
2, where 1 � i1 < j1 � jp

e
1j and 1 � i2 < j2 � jp

e
2j ,

j1 � i1 = j2 � i2 ^ p
e
1[i1 + k] = p

e
2[i2 + k] for all 0 � k � j1 � i1

=) t(pe1)[i1] � t(pe1)[j1] i� t(pe2)[i2] � t(pe2)[j2] :

The dependence relation between two node instances with memory opera-

tions may be irregular even for straight line loops. Existing software pipelining

techniques rely on conservative dependence analysis techniques, in which the de-

pendence relationship between two node instances is determined by considering

the iteration di�erence only [16] and is usually represented by data dependence

graphs [17] or its extensions [18, 19]. The above property holds for these rep-

resentation techniques. In our work, we assume a similar memory dependence

7

x is live x is live

x=a+1

x=b*2

z = f(x)

x=a+1

t=b*2

x=t

z=f(x)

x=g()

t=g()

x=t

t=g()

(a) (b)

Fig. 5. Copy operations used to overcome false dependences

relation , in which the dependence relation between node instances with memory

operations also satis�es the above property.

4.2 False Dependences

For loops with control
ows, it is not a trivial matter to handle false dependences.

They cannot be eliminated completely even if each live range is renamed before

scheduling. For example, the scheduling techniques described in [14, 15] rely on

the \on the
y" register allocation scheme based on copy operations so that the

schedule is constrained by true dependences only.

In Fig. 5. (a), for the x=b*2 to be scheduled above the branch node, x should

not be used for the target register of x=b*2 and, therefore, the live range from

x=b*2 to z=f(x) should be renamed. But the live range from x=b*2 to z=f(x)

alone cannot be renamed because the live range from x=a+1 to z=f(x) is com-

bined with the former by x. Thus, the live range is splitted by the copy operation

x=t so that t carries the result of b*2 along the prohibited region and t passes

b*2 to x the result.

In Fig. 5. (b), x=g() is to be scheduled across the exit branch but x=g() is

used at the exit. So the live range from x=g() to exit is expected to be longer

than an iteration, but it cannot be realized if only one register is allocated for

the live range due to the register overwrite problem. This can be handled by

splitting the long live range into ones each of which does not span more than an

iteration, say one from t=g() to x=t and one from x=t to the exit.

In the next section, these copy operations used for renaming are distinguished

from ones in the input programs which are byproduct of other optimizations such

as common subexpression elimination. The true dependence carried by the live

range joined by these copy operations is represented by
�
� relation as follows.

De�nition 2. Given an execution path of a parallel program p
e
, let Npe rep-

resent the set of all node instances in t(pe). For node instances n in t(pe;sp),

Prop(n) represents the set of copy node instances in t(pe) by which the value

de�ned by n is propagated, that is,

Prop(n) = fnc j n � nc1 ; n
c
k � nc; nci � nci+1 for all 1 � i < k

where nc and nci (1 � i � k) are copy node instancesg :

8

For node instances n1 and n2 in Npe , we write n1
�
� n2 if

n1 � n2 or 9 nc 2 Prop(n1); n
c
� n2 :

De�nition 3. The extended live range of n, written elr(n), is the union of the

live range of the node instance n and those of copy node instances in Prop(n),

that is,

elr(n) = t(p)[pos(n);maxfpos(nc)jnc 2 Prop(n)g] :

Now we are ready to de�ne a dependence chain for sequential and the parallel

programs.

De�nition 4. Given a path p, a dependence chain d in p is a sequence of node

instances in t(p) hn1;n2; � � � ;nki such that ni
�
� ni+1 for all 1 � i < k.

The i-th component of a dependence chain d is addressed by d[i] and the

number of components in d is denoted by jdj.

5 Requirements of Software Pipelining

In this section, we develop a formal account of transformations of software

pipelining, which will provide a basis for the proof in Sect. 6. Given an input

loop L and its parallel version L
SP, let Pe and Pe;SP denote the set of all ex-

ecution paths in L and the set of those in L
SP, respectively. Let us consider a

relation R : Pe
�Pe;SP de�ned by

(pe; pe;sp) 2 R i� 9 a store s; ep(L; s) � p
e
^ ep(LSP

; s) � p
e;sp

:

In order to formalize software pipelining, we are to restrict transformations (that

map p
e into pe;sp) by the following �ve constraints, Constraints 1-5.

First, transformations should exploit only dependence information, that is,

they should have only the e�ect of reordering nodes. Some optimization tech-

niques (e.g., strength reduction and tree height reduction) may reduce the path

length by using other semantic properties of programs (e.g., associativity). How-

ever, the scheduler is not responsible for such optimizations. These optimizations

are performed before/after the scheduling phase.

Additionally, the scheduler is not responsible for eliminating partially dead

operation nodes in p
e, which are not used in p

e but may be used in another ex-

ecution paths. Partially dead operations may become fully dead by some trans-

formations such as moving branch up and can be eliminated on the
y [15], but

we assume that they are not eliminated until a post-pass optimization phase.

We require that all operation nodes in p
e, dead or not, be also present in p

e;sp.

Therefore pe;sp is required to execute the same operations as pe in an order com-

patible with the dependences present in p
e. The path p

e;sp, however, may have

9

additional speculative nodes2 from other execution paths that do not a�ect the

�nal store of pe;sp and copy operations used for overcoming false dependences

[14, 15]. Formally, the �rst constraint on transformations can be given as follows.

Constraint 1. Let N1 represent the set of all node instances in t(pe) and let

N2 represent the set of all e�ective node instances in t(pe;sp). Then, there exists

a bijective function f from N1 to N2 such that

8n 2 N1; op(node(n)) = op(node(f(n))) and

8n;n0
2 N1; n � n0

i� f(n)
�
� f(n0) :

In this case, f(n) is said to correspond to n and we use sp nipe;pe;sp to represent

the function f for a pair of such execution paths p
e
and p

e;sp
.

Second, the �nal store3 of pe;sp should be equal to that of pe to preserve

the semantic of L. For this, we require that for any node n = node(n), where

n is a node instance in t(pe), if the target register of n is live at the exit of

p
e, the value de�ned by node(sp nipe;pe;sp(n)) should be eventually committed

to regW(n) along p
e;sp. For simplicity, we assume that all registers in p

e are

regarded as being live at the exit of pe during software pipelining. The liveness

of each node in pe;sp are checked at post-pass dead code elimination optimization

phase. Constraint 2 concisely states this condition.

Constraint 2. For any assignment node instance n in t(pe) such that

8i > pos(n); regW(pe[i]) 6= regW(node(n)),

regW(node(n)) = regW(node(sp nipe;pe;sp(n))) or

regW(node(n)) = regW(node(nc)) for some node instance nc 2 Prop(sp nipe;pe;sp(n)):

It is needed to impose a restriction on registers allocated for speculative

nodes. Registers de�ned by speculative nodes are required to be temporary reg-

isters that are not used in L so as not to a�ect the �nal store.

Constraint 3. Let R be the set of registers that are de�ned by nodes in L. Then

the target register of each speculative node in L
SP

is not contained in R.

Now we are to impose a restriction to preserve the semantic of branches. Let

us consider a branch node instance n = t(pe)[i] and the corresponding node in-

stance n0 = t(pe;sp)[i0] = sp nipe;pe;sp(n). The role of n is to separate pe from the

set of execution paths that can be represented by pe[1; i]�pf where pf represents

any path such that pf [1] = p
e[i]; pf [2] 6= p

e[i + 1] and pf [jpf j] is an exit node in

L. n0 is required to do the same role as n, that is, it should separate pe;sp from

the set of corresponding execution paths. But some of them might already be

2 In fact, most complications of the nonexistence proof in Sect. 6 as well as the for-

malization of software pipelining are due to expanded solution space opened up by

branch reordering transformation.
3 Temporary registers are excluded.

10

separated from p
e;sp earlier than n0 due to another speculative branch node, the

instance of which in p
e;sp is redundant, scheduled above n0. This constraint can

be written as follows.

Constraint 4. Given an execution path p
e
and q

e
in L such that

q
e[1; i] � p

e[1; i] ^ dir(t(qe)[i]) 6= dir(t(pe)[i]) ;

for any execution path p
e;sp

and q
e;sp

such that (pe; pe;sp)(qe; qe;sp) 2 R; there

exists a branch node p
e;sp[j] (j � i

0) such that

q
e;sp[1; j] � p

e;sp[1; j] ^ dir(t(qe;sp)[j]) 6= dir(t(pe;sp)[j])

where i
0
is an integer such that t(pe;sp)[i0] = sp nipe;pe;sp(t(p

e)[i]) .

p
e;sp is said to be equivalent to p

e, written p
e
�SA p

e;sp, if Constraints 1-4

are all satis�ed. (The subscript SA is adapted from the expression \semantically

and algorithmically equivalent" in [1].) Constraint 4 can be used to rule out a

pathological case, uni�cation of execution paths. Two distinct execution paths

p
e
1 = ep(L; s1) and p

e
2 = ep(L; s2) in L are said to be uni�ed if ep(LSP

; s1) �

ep(LSP
; s2). Suppose p

e
1 is separated from p

e
2 by a branch, then ep(LSP

; s1) must

be separated from ep(LSP
; s2) by some branch by Constraint 4. So p

e
1 and p

e
2

cannot be uni�ed.

Let us consider the mapping cardinality of R. Since distinct execution paths

cannot be uni�ed, there is the unique p
e which is related to each p

e;sp. But

there may exist several pe;sp's that are related to the same p
e due to specu-

lative branches. Thus, R is a one-to-many relation, and if branch nodes are

not allowed to be reordered, R becomes a one-to-one relation. In addition,

the domain and image of R cover the entire Pe and Pe;SP, respectively. Be-

cause of our assumption in Sect. 3.3 that all the execution paths are executable,

8p
e
2 Pe

; 9 s; p
e
� ep(L; s) and the domain of R covers the entire Pe. When an

execution path pe 2 Pe is splitted into two execution paths p
e;sp
1 ; p

e;sp
2 2 Pe;SP by

scheduling some branch speculatively, it is reasonable for a compiler to assume

that these two paths are all executable under the same assumption and that the

image of R cover the entire Pe;sp. To be short, R�1 is a surjective function from

Pe;sp to Pe.

Let N and NSP represent the set of all node instances in all execution paths

in L and the set of all e�ective node instances in all execution paths in L
SP,

respectively. The following constraint can be derived from the above explanation.

Constraint 5. There exists a surjective function � : Pe;SP
) Pe

such that

8 p
e;sp

2 Pe;SP
; �(pe;sp) �SA p

e;sp
:

Using � de�ned in Constraint 5 above and sp nipe;pe;sp de�ned in Constraint

1, another useful function � is de�ned, which maps each node instance in NSP

to its corresponding node instance in N.

11

De�nition 5. � : NSP
) N is a surjective function such that

�(nsp) = sp ni�(pe;sp);pe;sp
�1(nsp)

where p
e;sp

2 Pe;SP
is the unique execution path that contains nsp.

To the best of our knowledge, all the software pipelining techniques reported

in literature satisfy Constraints 1-5.

6 Nonexistence of Time Optimal Solution

In this section, we prove a necessary condition for a loop to have an equivalent

time optimal parallel program. Before a formal proof, we �rst de�ne time opti-

mality. For each execution path p
e;sp

2 Pe;SP, the execution time of each node

instance n in t(pe;sp) can be counted from the grouping information associated

with LSP and is denoted by �(n). Time optimality of the parallel program L
SP

is de�ned as follows [1, 14].

De�nition 6. (Time Optimality)

L
SP

is time optimal, if for every execution path p
e;sp

2 Pe;SP
, �(t(pe;sp)[jpe;spj])

is the length of the longest dependence chain in the execution path p
e
.

The de�nition is equivalent to saying that every execution path in LSP runs

in the shortest possible time subject to the true dependences. Note that the

longest dependence chain in p
e is used instead of that in p

e;sp because the latter

may contain speculative nodes which should not be considered for the de�nition

of time optimality. Throughout the renaming of the paper, the length of the

longest dependence chain in a path p is denoted by kpk.

For time optimal programs, there have been no signi�cant theoretical results

reported, since Schwiegelshohn et al. showed that no time optimal parallel pro-

grams exist for some loops with control
ows. [1]. In this section, we prove a

strong necessary condition for a loop to have the equivalent time optimal paral-

lel program. Our work is the �rst theoretical result on time optimality of loops

with control
ows.

The necessary condition for L to have its equivalent time optimal parallel

program is as follows.

Condition 1. There exists a constant B > 0 such that for any execution

path p
e
in L

kp
e[1; i]k+ kp

e[j; jpej]k � kp
e
k+B for all 1 � i < j � jp

e
j :

Let us consider the example loops shown in Fig. 6. These loops were adapted

from [1]. The �rst one (Fig. 6. (a)), which was shown to have an equivalent time

12

1

4

5

7

8

a = b + 1

6

b = a * 2
c = d + e

x = x + b + c

3 e = c / 3

if x == 0

if x != 1
2if y == 0

a = g2(x)a = g1(x)

x = f(a)

y = h(x)

if a > b

b = g(b)

9

10 11d = c / 2

a = f(a)

(a) (b) (c)

Fig. 6. Example loops used in [1] by Schwiegelshohn et al.

optimal program, satis�es Condition 1. For any execution path p
e that loops k

iterations, kpek = 2k + 1 and for 1 � i < j � jp
e
j = 4k , kpe[1; i]k � di=2e+ 1

and kpe[j; jpej]k � d2k � j=2e+ 2. So,

kp
e[1; i]k+ kp

e[j; jpej]k � 2k + 3� (j � i)=2 � kp
e
k+ 2 :

The second and third shown in Figs. 6. (b) and 6. (c) do not satisfy Condition 1,

thus having no equivalent time optimal programs as shown in [1]. For the loop in

Fig. 6. (b), let c1 = h1; 2; 4; 5; 8; 1i and c2 = h1; 6; 7; 8; 1i. For the execution path

p
e(k) = c

k
1 � c

k
2 , we have :

kp
e(k)[1; 5k]k+ kp

e(k)[5k + 1; jpe(k)j]k � kp
e(k)k =

(2k + 1) + (2k + 1)� (3k + 1) = k + 1 :

As k is not bounded, there cannot exist a constant B for the loop and it does

not satisfy Condition 1. It can be also shown that the loop in Fig. 6. (c) does not

satisfy Condition 1 by a similar way.

Throughout the remaining of this section, we assume that L does not satisfy

Condition 1 and that LSP is time optimal. Eventually, it is proved that this

assumption leads to a contradiction showing that Condition 1 is indeed a neces-

sary condition. Without loss of generality, we assume that every operation takes

1 cycle to execute. An operation that takes k cycles can be transformed into a

chaining of k unit-time operations. The following proof is not a�ected by this

transformation.

Lemma 1. For any l > 0, there exists an execution path p
e;sp

in L
SP

and de-

pendence chains of length l in p
e;sp

, d1 and d2, which contain only e�ective node

instances such that pos(d1[j]) > pos(d2[k]) and pos(�(d1[j])) < pos(�(d2[k])) for

any 1 � j; k � l.

Proof. From the assumption that L does not satisfy Condition 1, there must exist

i1; i2 (i1 < i2) and p
e such that kpe[1; i1]k + kp

e[i2; jp
e
j]k > kp

e
k + 2 � l. Note

that both the terms of LHS is greater than l because otherwise LHS becomes

smaller than or equal to kpek+ l, a contradiction.

13

d’

d’

d’

2

d 2

d 2

[1])d

[2])

[3])

d’1

1

1

d’

d’

d

d

[1])d

[2])

[3])

[1] =

[2] =

[3] =

2

2

2

1

1

1

d 1[1]

d 1

d 1

[2]

[3]

(β

(β

(β

(β

(β

(β

[1]d 2

d 2

d 2

[2]

[3]

[5] =

[6] =

[7] =

p
e,sp

p
e

Fig. 7. An example illustrating Lemma 1

There exist dependence chains d01 of length kp
e[1; i1]k and d

0
2 of length kp

e[i2; jp
e
j]k

in pe such that pos(d01[kp
e[1; i1]k]) � i1 and pos(d

0
2[1]) � i2. Let p

e;sp be an execu-

tion path in LSP such that �(pe;sp) = p
e. By Constraint 1, there exist dependence

chains d1 and d2 of length l in p
e;sp such that �(d1[j]) = d

0
1[j � l + kp

e[1; i1]k]

and �(d2[k]) = d
0
2[k] for 1 � j; k � l. Then we have for any 1 � j; k � l :

pos(�(d1[j])) = pos(d01[j � l + kp
e[1; i1]k]) � i1 < i2 � pos(d02[k]) = pos(�(d2[k]))

Next, consider the ranges for �(d1[j]) and �(d2[k]), respectively :

�(d1[j]) � jd
0
1[1; j � l + kp

e[1; i1]k � 1]j = j � l + kp
e[1; i1]k � 1

�(d2[k]) � kp
e
k � jd

0
2[k; kp

e[i2; jp
e
j]k]j+ 1 = kp

e
k � kp

e[i2; jp
e
j]k+ k

Consequently, we have for any 1 � j; k � l :

�(d1[j])� �(d2[k]) � kp
e[1; i1]k+ kp

e[i2; jp
e
j]k � kp

e
k+ j � k � l + 1 > 0 :

Therefore, pos(d1[j]) > pos(d2[k]). ut

Figure 7 illustrates Lemma 1 using an example where l = 3.

For the rest of this section, we use p
e;sp(l) to represent an execution path

which satis�es the condition of Lemma 1 for a given l > 0, and d1(l) and d2(l)

are used to represent corresponding d1 and d2, respectively. In addition, let i1(l)

and i2(l) be i1 and i2, respectively, as used in the proof of Lemma 1 for a given

l > 0. Finally, pe(l) represents �(pe;sp(l)).

Next, we are to derive the register requirement for \interfering" extended

live ranges. reg(elr(n);n0) is used to denote the register which carries elr(n) at

n0.

Lemma 2. Given k assignment node instances n1;n2; � � � ;nk in an execution

path in L
SP

and a node instance n in the execution path, if n is contained in

elr(ni) for all 1 � i � k, reg(elr(n1);n), reg(elr(n2);n), � � �, reg(elr(nk);n)

are all distinct.

14

Proof. The proof is by induction on k. The base case is trivial. For the induction

step, assume the above proposition holds for k = h � 1. Consider h+ 1 assign-

ment node instances n0
1;n

0
2; � � � ;n

0
h+1 in an execution path p

e;sp whose extended

live ranges share a common node instance n0. Without loss of generality let us

assume pos(n0
h+1) > pos(n0

i) for all 1 � i � h. Then the range shared by these

extended live ranges can be written as t(pe;sp)[pos(n0
h+1); pos(n

0)].

By induction hypothesis, reg(elr(n0
1);n

0
h+1), � � �, reg(elr(n

0
h);n

0
h+1)) are all

distinct. Moreover, regW(n0
h+1) must di�er from these h registers since the live

range de�ned by n0
h+1 interferes with any live ranges carried by these registers.

For the same reason at any point in t(pe;sp)[pos(n0
h+1); pos(n

0)], any register

which carries part of elr(n0
h+1) di�ers from h distinct registers which carry ex-

tended live ranges of n0
is. Therefore, the proposition in the above lemma holds

for all k > 0. ut

For loops without control
ows, the live range of a register cannot spans

more than an iteration although sometimes it is needed to do so. Modulo vari-

able expansion handles this problem by unrolling the software-pipelined loop by

su�ciently large times such that II becomes no less than the length of the live

range [20]. Techniques based on Enhanced Pipeline Scheduling usually overcome

this problem by splitting such long live ranges by copy operations during schedul-

ing, which is called as dynamic renaming or partial renaming [15]. Optionally

these copy operations are coalesced away after unrolling by a proper number

of times to reduce resource pressure burdened by these copy operations. Hard-

ware support such as rotating register �les simpli�es register renaming. For any

cases, the longer a live range spans, the more registers or amount of unrolling

are needed. There is a similar property for loops with control
ows as shown

below.

Lemma 3. Given an e�ective branch node instance nb in an execution path

p
e;sp

in L
SP

and a dependence chain d in p
e;sp

such that for any node instance

n in d, pos(n) < pos(nb) and pos(�(n)) > pos(�(nb)), there exist at least

bjdj=(M + 1)c � 1 node instances in d whose extended live ranges contain nb
where M denotes the length of the longest simple path in L.

Proof. Let pe = �(pe;sp) and M
0 = bjdj=(M + 1)c. From the de�nition of M ,

there must exist pos(�(d[1])) � i1 < i2 < � � � < iM 0 � pos(�(d[jdj])) such that

p
e[i1] = p

e[i2] = � � � = p
e[iM 0]. If pe[i] = p

e[j] (i < j), there must exist a node

instance in p
e, n0 (i � pos(n0) < j) such that 8 k > pos(n); regW(pe[k]) 6=

regW(node(n0)). Thus by Constraint 2, there must exist node instances in d,

n1;n2; � � � ;nM 0�1, such that

regW(node(�(ni))) = regW(node(ni)) or

regW(node(�(ni))) = regW(node(nc))

for some node instance nc 2 Prop(ni) for all 1 � i �M
0
� 1 :

Since pos(ni) < pos(nb) and pos(�(ni)) > pos(�(nb)), node(ni) is specu-

lative for all 1 � i � M
0
� 1. By Constraint 3, regW(node(ni)) =2 R and the

15

value de�ned by ni cannot be committed into r 2 R until nb. So, elr(ni) should

contain nb for all 1 � i �M
0
� 1. ut

Lemma 4. Let Nb(l) represent the set of e�ective branch node instances in

p
e;sp(l) such that for any nb 2 Nb(l), pos(�(nb)) � i1(l) and pos(nb) > pos(d2(l)[1]).

Then there exists a constant C > 0 such that �(nb) < kp
e(l)[1; i1(l)]k� 2 � l+C.

Proof. Let C = (M+1)(R+2) whereM is de�ned as in Lemma 3 and R denotes

the number of registers used in LSP. Suppose �(nb) � kp
e(l)[1; i1(l)]k� 2 � l+C.

From the proof of Lemma 1, �(d2(l)[C]) � kp
e(l)k � kp

e(l)[i2(l); jp
e(l)j]k +

C � 1 < �(nb). So at least bC=(M + 1)c � 1 = R + 1 registers are required by

Lemmas 2 and 3, a contradiction. So, �(nb) < kp
e(l)[1; i1(l)]k � 2 � l + C. ut

Theorem 1. Condition 1 is a necessary condition for L to have an equivalent

time optimal program.

Proof. By Lemma 4, there exist an e�ective branch node instance nb in p
e;sp(l)

such that �(nb) < kp
e(l)[1; i1(l)]k� 2 � l+C and �(nb) > �(n0

b) where n
0
b repre-

sents any branch node instance in �(n0
b) such that pos(�(n0

b)) � pos(�(d01(l)[l]).

Let P (nb) be the set of execution paths in LSP such that qe;sp 2 P (nb) if

q
e;sp[1; pos(nb)] = p

e;sp(l)[1; pos(nb)] and

dir(t(qe;sp)[pos(nb)]) 6= dir(t(pe;sp(l))[pos(nb)]) . Then kq
e;sp

k � kp
e(l)[1; i1(l)]k.

By Lemma 2, we have kqe;sp[pos(nb)+1; kqe;spk]k > l�C. Since l is not bounded

and C is bounded, the length of any path starting from node(nb) is not bounded,

a contradiction. Therefore the assumption that LSP is time optimal is not valid

and Condition 1 is indeed a necessary condition. ut

7 Conclusion

In this paper, we presented a necessary condition for loops with control
ows

to have their equivalent time optimal programs. The necessary condition de-

scribed in the paper generalizes the Schwiegelshohn et al.'s work, which was

lacking for a formalism to produce such a general condition. Based on a newly

proposed formalization of software pipelining, we proved the necessary condition

in a mathematically concrete fashion.

Our result, which is the �rst general theoretical result on time optimal soft-

ware pipelining, is an important �rst step towards time optimal software pipelin-

ing. We strongly believe that the necessary condition presented in the paper is

also the su�cient condition. Our immediate future work, therefore, includes the

veri�cation of this claim. As a long-term research goal, we plan to develop a time

optimal software pipelining algorithm that can generate time optimal programs

for eligible loops.

References

1. U. Schwiegelshohn, F. Gasperoni, and K. Ebcio�glu. On Optimal Parallelization of

Arbitrary Loops. Journal of Parallel and Distributed Computing, 11(2):130{134,

1991.

16

2. A. Aiken and A. Nicolau. Perfect Pipelining. In Proceedings of the Second European

Symposium on Programming, pages 221{235, June 1988.
3. K. Ebcio�glu. A Compilation Technique for Software Pipelining of Loops with Con-

ditional Jumps. In Proceedings of the 20th Annual Workshop on Microprogramming

(Micro-20), pages 69{79, 1987.
4. A. Zaky and P. Sadayappan. Optimal Static Scheduling of Sequential Loops with

Tests. In Proceedings of the International Conference on Parallel Processing, pages

130{137, 1989.
5. A. Aiken and A. Nicolau. Optimal Loop Parallelization. In Proceedings of the

SIGPLAN 1988 Conference on Programming Language Design and Implementa-

tion, pages 308{317, 1988.
6. F. Gasperoni and U. Schwiegelshohn. Generating Close to Optimum Loop Sched-

ules on Parallel Processors. Parallel Processing Letters, 4(4):391{403, 1994.
7. F. Gasperoni and U. Schwiegelshohn. Optimal Loop Scheduling on Multiproces-

sors: A Pumping Lemma for p-Processor Schedules. In Proceedings of the 3rd

International Conference on Parallel Computing Technologies, pages 51{56, 1995.
8. L.-F. Chao and E. Sha. Scheduling Data-Flow Graphs via Retiming and Unfolding.

IEEE Transactions on Parallel and Distributed Systems, 8(12):1259{1267, 1997.
9. P.-Y. Calland, A. Darte, and Y. Robert. Circuit Retiming Applied to Decom-

posed Software Pipelining. IEEE Transactions on Parallel and Distributed Sys-

tems, 9(1):24{35, 1998.
10. F. Gasperoni and U. Schwiegelshohn. List Scheduling in the Presence of Branches

: A Theoretical Evaluation. Theoretical Computer Science, 196(2):347{363, 1998.
11. A. Uht. Requirements for Optimal Execution of Loops with Tests. IEEE Trans-

actions on Parallel and Distributed Systems, 3(5):573{581, 1992.
12. S.-M. Moon and S. Carson. Generalized Multi-way Branch Unit for VLIW Micro-

processors. IEEE Transactions on Parallel and Distributed Systems, pages 850{862,

1995.
13. K. Ebcio�glu. Some Design Ideas for a VLIW Architecture for Sequential Natured

Software. In Proceedings of IFIP WG 10.3 Working Conference on Parallel Pro-

cessing, pages 3{21, 1988.
14. A. Aiken, A. Nicolau, and S. Novack. Resource-Constrained Software Pipelining.

IEEE Transactions on Parallel and Distributed Systems, 6(12):1248{1270, 1995.
15. S.-M. Moon and K. Ebcio�glu. Parallelizing Non-numerical Code with Selective

Scheduling and Software Pipelining. ACM Transactions on Programming Lan-

guages and Systems, pages 853{898, 1997.
16. V. Allan, R. Jones, R. Lee, and S. Allan. Software Pipelining. ACM Computing

Surveys, 27(3):367{432, 1995.
17. D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence Graphs

and Compiler Optimizations. In SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 207{218, 1981.
18. J. Farrante, K. Ottenstein, and J. Warren. The Program Dependence Graph and Its

Use in Optimization. ACM Transactions on Programming Languages and Systems,

9(3):319{349, 1987.
19. K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill. Dependence Flow

Graphs: An Algebraic Approach to Program Dependences. In Proceedings of the

1991 Symposium on Principles of Programming Languages, pages 67{78, 1991.
20. M. Lam. Software Pipelining: An E�ective Scheduling Technique for VLIW Ma-

chines. In Proceedings of the SIGPLAN 1988 Conference on Programming Lan-

guage Design and Implementation, pages 318{328, 1988.

17

