
A Dynamic Voltage Scaling Algorithm for Dynamic-Priority Hard Real-Time
Systems Using Slack Time Analysis

Woonseok Kim� Jihong Kim� Sang Lyul Min�

School of Computer Science and Engineering
Seoul National University ENG4190, Seoul, Korea, 151-742

wskim@archi.snu.ac.kr, jihong@davinci.snu.ac.kr, symin@dandelion.snu.ac.kr

Abstract

Dynamic voltage scaling (DVS), which adjusts the clock
speed and supply voltage dynamically, is an effective tech-
nique in reducing the energy consumption of embedded real-
time systems. The energy efficiency of a DVS algorithm largely
depends on the performance of the slack estimation method
used in it. In this paper, we propose a novel DVS algorithm
for periodic hard real-time tasks based on an improved slack
estimation algorithm. Unlike the existing techniques, the pro-
posed method takes full advantage of the periodic character-
istics of the real-time tasks under priority-driven scheduling
such as EDF. Experimental results show that the proposed al-
gorithm reduces the energy consumption by 20�40% over the
existing DVS algorithm. The experiment results also show that
our algorithm based on the improved slack estimation method
gives comparable energy savings to the DVS algorithm based
on the theoretically optimal (but impractical) slack estimation
method.

1. Introduction

Since the energy consumption � of CMOS circuits has a
quadratic dependency on the supply voltage ��� , lowering
the supply voltage ��� is an effective way of reducing en-
ergy consumption of embedded mobile systems such as digital
cellular phones and personal digital assistants. However, low-
ering the supply voltage also decreases the maximum achiev-
able clock speed; in the CMOS circuit, the delay �� is given
by �� � ����������� �

�, where �� is the threshold volt-
age and � is a velocity saturation index [11]. This energy-
delay trade-off makes possible various dynamic voltage scal-
ing (DVS) techniques that adjust the clock speed and the sup-

�This work was supported in part by the Ministry of Education under the
BK21 program, and by the Ministry of Science and Technology under the
National Research Laboratory program.

�This work was supported by grant No. R01-2001-00360 from the Korea
Science & Engineering Foundation.

ply voltage dynamically according to the performance require-
ments of given tasks.

For hard real-time systems where tasks have stringent tim-
ing constraints, the energy-delay trade-off makes the DVS
problem more challenging. When the supply voltage and
clock speed are lowered for reduced energy consumption, the
execution times of the tasks may increase, resulting in dead-
line misses. Since deadline misses in real-time systems can
cause catastrophic system failures, dynamic voltage scaling
can utilize only slack times (or idle times) when adjusting volt-
age levels. Therefore, the energy efficiency of a real-time DVS
algorithm largely depends on how accurately these slack times
are estimated.

Slack time analysis has been extensively investigated in
real-time server systems in which aperiodic (or sporadic) tasks
are jointly scheduled with periodic tasks [1, 15, 10]. In these
systems, the purpose of slack time analysis is to improve the
response time of aperiodic tasks or to increase their accep-
tance ratio. However, since the existing slack analysis meth-
ods [1, 15, 10] usually require high time and/or space over-
heads, they are not applicable to mobile embedded systems
where resources are constrained. For this reason, most exist-
ing on-line DVS algorithms for embedded systems use simple
heuristics in estimating slack times.

While there have been various research efforts on off-line
DVS scheduling algorithms that try to identify the slack times
under worst-case execution scenarios [16, 3, 7, 14, 5, 2, 9], lit-
tle has been done on efficiently estimating on-line slack times
due to dynamic workload variations, often called workload-
variation slack times (VSTs) [6]. In existing algorithms such
as [13, 14] for periodic real-time systems, the VSTs are esti-
mated too conservatively. For example, in the lpps/EDF al-
gorithm [14], the VSTs are identified only when a single task
is activated and the arrival time of the next task is later than
the task’s worst case execution time (WCET). This is overly
pessimistic in estimating VSTs. In many task sets, more VSTs
can be computed without significantly increasing overheads.

In this paper, we focus on improving the on-line slack es-
timation part of a DVS algorithm and show that a better slack
estimation method can significantly improve the energy effi-

ciency. In particular, we propose a novel on-line DVS algo-
rithm for periodic real-time tasks that are scheduled under the
Earliest-Deadline-First (EDF) algorithm. Unlike the existing
algorithms, the proposed algorithm fully takes advantage of
the task periodicity in estimating available slack times. The
novel aspect of the proposed algorithm is that it can reclaim
future slack times from lower-priority tasks as well as those
from already completed higher-priority tasks. Experimental
results show that the proposed algorithm can reduce the energy
consumption by 20�40% over the existing DVS algorithm.

The rest of the paper is organized as follows. Before we
describe the proposed algorithm in detail, we explain the tar-
get system model and present a motivational example in Sec-
tion 2. In Section 3, we give the basic idea of the proposed
slack estimation method. The details of the proposed voltage
scheduling algorithm including the improved slack estimation
algorithm are given in Section 4. Section 5 discusses exper-
imental results and, finally, Section 6 concludes with a sum-
mary and discussion of future work.

2. Motivation

2.1. System model

We consider a preemptive hard real-time system in which
periodic real-time tasks are scheduled under the EDF schedul-
ing policy. The target variable voltage processor can scale its
supply voltage and clock speed continuously within its oper-
ational ranges, [����� ����] and [����� ����]. A set � of 	
periodic tasks is denoted as � � �
��
�� � � � �
���� where
tasks are assumed to be mutually independent. Each task
 �
has its own period �� and worst case execution time (WCET)
��. The relative deadline
� of
� is assumed to be equal to its
period ��. Each task activates (or releases) its instance period-
ically, and the (j+1)-th instance of
� is denoted by
�	
 . We
also denote a task instance by a single subscript such as
��� if
its meaning is clear by the context. Each task instance
��� has
its own arrival time ���� and absolute deadline
���.

In the remainder of this paper, we assume that the processor
utilization �� of � is 1 when � is executed under the worst-
case execution scenario. In the case where�� is not 1, we can
lower the maximum clock frequency to � ���� � �� � ����

without violating any timing constraint. With � ����, the pro-
cessor utilization becomes 1, leaving no idle intervals if every
task instance takes the WCET for its execution.

2.2. Motivational example

Consider a periodic task set � shown in Table 1. In addi-
tion to periods and WCETs, we assume that the average-case
execution time (ACET) of each task is 0.5 in Table 1�. In
order to illustrate that a better on-line slack analysis is pos-
sible for more energy savings, suppose that � is scheduled

�We assume that tasks’ execution times are based on the maximum clock
frequency.

Table 1. An example real-time task set � .

period (��) WCET (��) ACET (��)
�� 2 1 0.5
�� 3 1 0.5
�� 6 1 0.5

0 1 2 3 4 5 6

fmax

sp
ee

d
sl

ac
k

1

2

(b)

(a)

time

time

�� ����

Figure 1. Voltage scheduling examples; (a) the
voltage schedule from the lpps/EDF algorithm,
and (b) the cumulative slack times at each
scheduling point under the lpps/EDF algo-
rithm.

under lpps/EDF [14]. Under the lpps/EDF scheduling al-
gorithm, the workload-variation slack times exist if 1) there is
currently no other ready task instance and 2) the earliest ar-
rival time of the next task instance is later than the worst-case
completion time of the current task instance. Otherwise, the
lpps/EDF algorithm assumes that there exists no slack time
and schedules the current task instance with ����.

The above simple heuristics leads to an overly conserva-
tive approach in estimating slack times. Figure 1(a) shows the
speed schedule when the lpps/EDF algorithm is used for the
example task set � assuming that the actual execution time
of each task is equal to its ACET. When the first scheduled
task instance
�	� completes its execution at � � ���, there
is a slack time of 0.5 time units, which can be used to lower
the execution speed for the next scheduled task instance
�	�.
However, since
�	� was already activated,
�	� is scheduled
with the maximum speed. When
�	� is completed and
�	�
is scheduled at � � ���, there exists no other activated task.
But, since the arrival time of
�	� is not later than the comple-
tion time of
�	� when
�	� takes its WCET,
�	� also cannot
be scheduled with a lowered voltage even though there exists
a slack time of 1. In fact, only one task instance (
�	�) within
a hyperperiod of 6 can be scheduled with a lowered speed.

The inability of using lower speeds for the example task set
� with the lpps/EDF comes from an inefficient slack time
estimation method used in the algorithm. As shown in Fig-
ure 1(b), there do exist slack times at most scheduling points.
Our main goal in this paper is to devise an efficient and ac-
curate slack time estimation method that can identify most of

execution of higher-priority
task instances

execution of higher-priority
task instances

time
(a)

time
(c)

time
(b)

���� ������������ ����� ����� ���� ���� ���� �ÆÆÆ ����

�������� �ÆÆÆ

�ÆÆÆ

���� ����

���� ������������ ���� �ÆÆÆ �����ÆÆÆ

�ÆÆÆ ���� ���� ���� ��������

���� ������������ ����� ���� ���� ���� �ÆÆÆ ����

�����ÆÆÆ

�ÆÆÆ

���� ���� ����

�����

Figure 2. Sources of slack times for
���; (a)
no slack times available, (b) slack times from
higher-priority tasks, and (c) slack times both
from higher/lower-priority tasks.

available slack times without incurring too much overhead.

3. Basic idea

Consider a set � of periodic tasks whose processor utiliza-
tion �� is 1. Since �� is equal to 1, there is no slack time
available under the worst case execution scenario in which ev-
ery task instance takes the WCET for its execution. In this
case, the time interval between the arrival time ���� and the
deadline
��� of a task
��� consists of three sub-intervals: (1) the
sub-interval [���� , �����], (2) the sub-interval [����� ,
����], and (3) the
sub-interval [
���� ,
���] where ����� and
���� are the expected start
time and finish time for
��� under the worst case scenario. For
example, in Figure 2, in [���� , �����], tasks whose priority is higher
than
��� (such as those denoted by
��� and

 in Figure 2) are
executed and in [
���� ,
���], tasks whose priority is lower than
���
(such as those denoted by
ÆÆÆ and
��� in Figure 2) are executed.

When
��� and

 are completed earlier than the expected
start time ����� of
��� ,
��� can use their unused execution times,
effectively moving its start time earlier than ����� , as shown in
Figure 2(b). It is also possible that
��� can delay the expected
finish time
���� of
��� (under the worst case scenario). For ex-
ample, if the release time of
ÆÆÆ and
��� are earlier than ���� , they
may have (partially) completed its execution before ���� . In this
case,
��� may extend its deadline as shown in Figure 2(c). We
call this new extended deadline the effective deadline of
��� .
The effective deadline of a task instance
��� is defined to be
the latest time that guarantees the feasible execution of all the
remaining task instances.

In summary, the available slack times for a task come from
two sources: 1) slack times from higher-priority tasks and 2)
slack times from lower-priority tasks. In this paper, we pro-
pose a slack estimation method that accounts for both types of
slack times efficiently.

1 2 60 3 4 5

fmax

1 2 60 3 4 5

fmax

time

sp
ee

d

fmax

time

sp
ee

d

fmax

time

sp
ee

d(a)

(d)

time

(c)

(b)

sp
ee

d

�� �� ��

Figure 3. Voltage scheduling examples.

In order to demonstrate that a better slack estimation can
improve the energy efficiency significantly, consider the exam-
ple task set of Figure 1 again. When
�	� is completed at � �
���,
�	� starts its execution at � � ���. Since
�	� was sched-
uled to begin its execution at � � ���, even if the execution
�	�
is prolonged by 0.5 time units, the remaining schedule is still
feasible. Thus, as shown in Figure 3(a),
�	� may stretch its
execution with the lowered clock speed (�

���������). When

�	� completes its execution at � � ����,
�	� can stretch its
execution with the clock speed of �

����������, as shown in
Figure 3(b).

When
�	� is activated at � � �,
�	� is still running and

�	� will preempt
�	�’s execution because
�	� has a higher-
priority than
�	�. At this point, since
�	� has been already
partially executed, the remaining execution of
�	� will not
take its WCET. Therefore,
�	� may extend its deadline ac-
cordingly. In this case, only 0.57 time units is left for
�	�
assuming it requires its WCET, thus
�	� may stretch its exe-
cution up to � � ��	� with the clock speed of �

���������� as
shown in Figure 3(c).

The remaining task instances,
�	�,
�	�, and
�	�, can be
scheduled in a similar manner. The final schedule is shown in
Figure 3(d). Assuming that the power consumption is propor-
tional to the square of clock speed, the schedule in Figure 3(d)
consumes 28.6% less energy than the schedule determined by
the lpps/EDF algorithm.

Slack times from higher-priority tasks that completed ear-
lier than expected can easily be estimated by identifying how
much their unused times are left at the scheduling point. How-
ever, estimating slack times from lower-priority tasks requires
non-trivial computational overhead. In order to identify the
latter type of slack times exactly, it must be checked that how
much time can be delayed for each of the remaining task in-
stances within the hyperperiod. The overhead of such an ex-

act slack estimation rapidly increases with the number of task
instances in the hyperperiod of a given task set. In the next
section, we describe in detail an approximate but still accurate
slack estimation algorithm for the second type of slack times.

4. Low-power scheduling using slack estimation
heuristic

4.1. Slack estimation algorithm

Before describing the proposed algorithm for slack estima-
tion, we define the following two notations that are used in
keeping track of available slack times of each task instance.

� ����
� : the unused execution time by
�

� � ���
� : the remaining WCET of
�

We assume that a real-time scheduler has two queues: wait-
Queue and readyQueue. The waitQueue and the readyQueue
contain the completed tasks and the currently activated tasks,
respectively. All the tasks are initially queued in waitQueue,
in which the tasks are sorted by their next arrival time. When
a task is activated, the task is moved from waitQueue to
readyQueue. At each task activation, both � ���

� and � ���
�

are set to ��, i.e., � ���
� = � ���

� = ��. Among the tasks in
readyQueue, the active task
��� with the earliest deadline is
scheduled to run under the EDF scheduling policy.

As
��� executes, its� ���
��� decreases and consumes its avail-

able execution time.
��� may complete its execution or be pre-
empted by a higher-priority task instance. When
��� is pre-
empted by a newly activated higher-priority task instance,
���
is re-queued into readyQueue while waiting for the resump-
tion. When
��� completes its execution, its remaining WCET
� ���

��� is reset to 0, and
��� is inserted into waitQueue. Note
that, however, we do not reset the unused time � ���

��� of
���;
����
��� is used to estimate the slack time available for other

task instances.
At the current scheduling point ����, the available execution

time for
��� consists of the following three times:

� ���
���� �����: the sum of the unused times from higher-
priority task instances already completed before ����,

� ����
��� : the currently remaining time for
���, and

� ���
���� �����: the sum of the slack times from the lower-
priority task instances.

Let ���
���� ����� be the set of higher-priority task instances
already completed before ����. Then ���
���� ����� is com-
puted as follows:

���
���� ����� �
�

�����	����	����

����
� � (1)

Note that � ���
��� may differ from � ���

��� . For example, if

��� is resumed from the previous preemption, part of work for

��� might have been processed in the previous execution while

consuming the unused times of higher-priority task instances.
In this case, � ���

��� may be greater than � ���
��� .

While ���
���� ����� and � ���
��� can be estimated easily,

the exact estimation of ���
���� ����� requires non-trivial time
and/or space overhead. For example, if we were to use the
optimal slack-stealing algorithm in [10], we should maintain
the information on the amount of work that must be completed
before the deadline of each task instance in the hyperperiod.
With this information, the available slack time at a schedul-
ing point can be exactly estimated. This optimal approach has
���� of time and space complexity in the worst case, where
� is the number of task instances in the hyperperiod.

In this paper, we estimate ���
���� ����� approximately as
follows. Since � ���

��� and ���
���� ����� are the time resources
which can be used for
���’s execution,
��� may stretch its
execution with a lowered clock speed by exploiting these
times. That is,
��� can be scheduled with the clock speed of

� ���
���

����
��� ��� 	����	����

����. Suppose that
��� is scheduled with
this clock speed at ����. If
��� requires the WCET for its execu-
tion,
��� will be completed at �� � ����
���
���� �����
�

���
��� .

In the case where a higher-priority task is activated before ��,

��� will be preempted and cannot complete its execution be-
fore ��. If such a task instance exists, it is computationally
expensive to estimate when
��� resumes and how much slack
times will be available when
��� is resumed. Thus, in this
case we just assume that the available execution time for
���
is (����

���
 ���
���� �����). If such a higher-priority task does
not exist, then we check whether more slack times are avail-
able for
��� from lower-priority task instances. At ��, if there
is no activated task, it is easy to see that
��� could have ex-
tended its execution to the earliest arrival time (� ��) of a task in
waitQueue as in [14]. Moreover, at �� (or ���), if the task in-
stances in readyQueue have slack times,
��� could have further
extended its execution using these slack times. Let

 be the
highest-priority task instance among the ones which are acti-
vated but not completed before ��. If ���
���� ����� 	� � ,where
���
���� ����� is the set of task instance that have lower-priority
than
��� and have already completed before ����,

 could have
slack times, and they can be estimated as follows:

� �
��

 � ��� � �
�

� � ���
���� ����� and
� �

��

���
���� ����� � �����

 �� ���

 �

�

���� ��	�				�

����
� (2)

The above estimation of ���
���� ����� is valid only when
there is no task instance that can be activated during [��,
��
 ���
���� �����] (or [���, ���
 ���
���� �����]) and has an
earlier deadline than

 (as shown in Figure 4(a)). If such a
task instance
��� exists (as shown in Figure 4(b)), the execu-
tion time extension of
��� is restricted to the arrival time of
��� ,
i.e., ���
���� ����� = ���� � ��.

Figure 5 summarizes the slack estimation procedure de-
scribed above. In this algorithm, since at most 	 tasks can
be activated at any time, Equations 1 and 2 (lines 5 and 15 in
Figure 5) can be computed in ��	�. In computing Equation 2,

(a)

(b)

time

time

��������

����

���	 �

�������� ���	�

���	 �

�������� ���	�����

����

����

�������� ���	� ����

����� � �
)

Figure 4. Slack estimation examples; when the
arrival time of higher-priority task is (a) later
than �� + ���
���� �����, and (b) later than �� but
earlier than �� + ���
���� �����.

we need to know which task will have the highest priority at
the given time. This step can be performed by simply scan-
ning readyQueue and waitQueue, which can be done in ��	�
time. Hence, the proposed algorithm has the time complexity
of ��	� where 	 �� � .

4.2. Voltage scheduling algorithm

The DVS algorithm based on the proposed slack estimation
method is summarized in Figure 6. The algorithm is executed
at every scheduling point such as the activation, resumption,
and completion of task instances.

At each scheduling point, we first update the unused times
of task instances in order to reflect the consumed times during
the execution of previously scheduled task instance or an idle
interval. To keep the consistency in reclaiming unused times
of task instances, the unused times of task instances are con-
sumed in decreasing order of the task instances’ priority. That
is, when
��� is completed, the unused times of already com-
pleted higher-priority task instances are consumed first, and
then
���’s unused time is consumed. Finally, the unused times
of (partially) completed lower-priority task instances are con-
sumed. If the system has been idle, the unused times of com-
pleted task instances in waitQueue are also consumed in de-
creasing order of task instances’ priority. Since this step (line
3 in Figure 6) is required only for task instances in waitQueue
and the active task instances in readyQueue, whose sum is 	
at most, it can be done in ��	�.

At the scheduling point ����, if the previous task instance

� completes its execution, its � ���

� is reset to 0 and
� is re-
queued into waitQueue. If
� is not completed but preempted
by a new active task
���,
� remains in readyQueue updating
its � ���

� only (line 8 in Figure 6).
When there is no active task, the processor enters a power-

down mode until a new task instance is activated. Otherwise,
we compute the available execution time ��
���� for
��� using

Algorithm 1 Estimate the available execution time for ����

1. Input: the active task ����, waitQ, readyQ, current time ���� ;

2. Output: the available execution time �	����
 for ����;

3. ��	����	 ����
 � the set of already completed higher-priority task instances;

4. ��	����	 ����
 � the set of already completed lower-priority task instances;

5. �� �
�

�����������
����
����
� � ����

��� ;

6. �� � �;

7. ����� � the earliest arrival time of a task instance whose priority is higher than ����;

8. if ����+�� � ����� then

9. �
 = the worst case completion time of ���� with the clock speed of
����
���
��

10. if there will be no activated task instance (i.e., readyQ = �) at �
 then

11. let ��
 = min(����� � waitQ));

12. �
 = max(�
 ,��
);

13. �			 = the task instance expected to be scheduled at �
;

14. � ��	�				 ����
 = the set of completed task instances whose priorities are

higher than or equal to that of �			 but less than that of ����;

15. �� � 	����
			 �� ���

			
 �
�

����
�
�
��			�
����

����
� ;

16. ��			 � the earliest arrival time of task instance whose priority is

higher than �			 ;

17. �� � min (��, ��			 � �
);

18. end if

19. �	����
 � min (��+����
��� +�� , ���� � ����);

20. Output �	����
;

Figure 5. Slack estimation algorithm.

the algorithm in Figure 5, and then adjust the clock speed to

���������� �
� ���

���

��
����
���� (3)

The supply voltage is also adjusted accordingly.
Managing the slack information (in line 3 in Figure 6) re-

quires ��	� operations. Thus, the entire steps of the proposed
DVS algorithm can be performed with the worst-case time
complexity of ��	�. Furthermore, the proposed DVS algo-
rithm does not require any static information which should be
prepared in the off-line phase; � ���

� is the only additional on-
line information required for each task
 �. Thus, the space
overhead of the proposed algorithm is also marginal.

5. Experimental results

To evaluate the energy efficiency of the proposed volt-
age scheduling algorithm, we performed several experiments
with three DVS algorithms using an energy simulator: 1) the
lpps/EDF algorithm [14], 2) the DVS algorithm based on
the proposed slack-estimation method, and 3) the DVS algo-
rithm with the optimal slack-estimation method [10]. We de-
note three algorithms by lpps/EDF, lp/SEH, and lp/OPT,
respectively. The energy simulator is based on the ARM8 mi-
croprocessor core. The clock speed is scaled in the range of
[8, 100] MHz with a step size of 1 MHz and the supply voltage

Algorithm 2 Schedule ���� with an appropriate clock speed and
corresponding voltage

1. Input: ���� = the currently scheduled task instance,

�� = the previously scheduled task instance,

���� = the previous scheduling point,

���� = the current scheduling point, and

���� = the current clock speed;

2. Output: voltage and clock speed setting;

3. Update unused times of tasks

by the amount of the consumed time � ����� � �����;

: i.e., for each task �� in decreasing order of its priority,

decrease ����
� until the entire consumed time of is reflected

4. if �� is completed at ���� then

5. Reset �� to 0 and move �� from readyQ to waitQ;

6. end if

7. if �� is preempted by ���� then

8. Decrease �� by the execution time of ��;

(i.e., �� � �� �
����
��
�

9. end if

10. if there is no activated task instance (i.e., readyQ = �) then

11. Powerdown the processor until the next task instance arrives;

12. else

13. Estimate the available times �	����
 for ���� using Algorithm 1;

14. Set the clock speed by ���� � 	����!�	����

 � ��
� &

15. adjust the corresponding voltage;

16. end if

Figure 6. Low-power scheduling algorithm
based on the slack estimation algorithm.

is scaled in the range of [1.1, 3.3] V. We assume that the sys-
tem enters into a power-down mode when the system is idle.
(The power consumption of a power-down mode is assumed
to be 0.) In the experiments, we assume that the voltage scal-
ing overhead is negligible both in the time delay and power
consumption.

Figure 7 shows the experimental results for three real-world
application task sets and synthesized task sets. The three real-
world application task sets are the task sets from the Comput-
erized Numerical Control (CNC) machine controller applica-
tion [4], Avionics application [8], and Video phone applica-
tion [12]. The characteristics of these applications are sum-
marized in Table 2. In each experiment, the execution time
of each task instance was randomly drawn from a Gaussian
distribution� in the range of [BCET, WCET] where BCET is
the best case execution time. For the three application task
sets, whose results are reported in Figure 7(a)�(c), we per-
formed the experiments by varying the BCET from 10% to
100% of WCET for each application. In each figure, the �-
axis represents the ratio of BCET to WCET while the �-axis
represents the normalized energy consumption ratio to the en-
ergy consumption of the same application running on a DVS-

�With the mean � �
��������
�

and the standard deviation 	 �
�����
���

�
.

Table 2. Task sets for experiments.
Applications
 tasks WCETs Periods Utilization

(ms) (ms)
CNC 8 0.035 � 0.72 2.4�9.6 0.489

Avionics 17 1 � 9 25�1,000 0.848
Videophone 4 1.4 � 50.4 40�66.7 0.986

unaware system with a power-down mode only.
Since the average execution times of task instances de-

crease as the BCET gets smaller, the slack times of task in-
stances increase as the BCET decreases. Thus, as shown in
Figure 7, the energy efficiency of each DVS algorithm in-
creases as the ratio of BCET to WCET decreases. However,
the energy efficiency of the proposed lp/SEH algorithm in-
creases much faster than lpps/EDF because the proposed
lp/SEH algorithm is more efficient in exploiting the slack
times of tasks than the lpps/EDF algorithm. The experimen-
tal results show that the lp/SEH achieves 20�40 % more en-
ergy savings compared to the lpps/EDF. Figure 7 also shows
that, in most cases, the proposed lp/SEH algorithm is com-
parable to the lp/OPT in its energy efficiency, although the
lp/OPT algorithm is computationally much more expensive
than the lp/SEH algorithm.

We also performed extensive experiments using synthe-
sized application sets by varying the number of tasks in a task
set whose results are given in Figure 7(d). For each number of
tasks, we randomly generated 100 task sets� whose utilization
is 1. The results show that as the number of tasks increases, the
energy efficiency of lp/SEH and lp/OPT increases while
that of lpps/EDF is not changed. This can be explained by
the fact that with an increased number of tasks, lp/SEH and
lp/OPT have more task instances from which the two algo-
rithms take slack times while in lpps/EDF the slack time
estimation is limited to the time between the completion of a
task instance and the arrival of the next task instance, which is
largely independent of the number of tasks in the system.

Results in Figure 7 also show that, while lp/OPT esti-
mates all the slack times available at the scheduling point,
its energy efficiency is not much better than that of lp/SEH.
This is because lp/OPT is optimal only in the slack estima-
tion step. In lp/OPT, the currently scheduled task consumes
all the available slack times. However, this greedy slack con-
sumption by the current task may result in less balanced volt-
age schedule. For example, it could produce a better voltage
schedule if some of the available slack time were left for the
following task. The results shown in Figure 7 strongly suggest
that for optimal DVS scheduling, an intelligent slack distribu-
tion as well as efficient slack estimation is important.

6. Conclusion

We have presented a novel voltage scheduling algorithm
based on an efficient slack estimation heuristic. The proposed

�The period and WCET of each task were randomly generated using the
uniform distribution within the ranges of [10, 100] ms and [1, period) ms.

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�
����
��

�
�
��

�
���
�
�
��
�
�
��
�
�

�
�

!
�
"
#�
�
�

�"" ��$%

�"�&�'

�"�()�

(a) CNC

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�
����
��

�
�
��

�
���
�
�
��
�
�
��
�
�

�
�

!
�
"
#�
�
�

�"" ��$%

�"�&�'

�"�()�

(b) Avionics

�

���

���

���

���

���

���

��	

��

���

�

��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�
����
��

�
�
��

�
���
�
�
��
�
�
��
�
�

�
�

!
�
"
#�
�
�

�"" ��$%

�"�&�'

�"�()�

(c) Video Phone

�

���

���

���

���

���

���

��	

��

���

�

� � �
 �� �� �� ��

������ �	
��
�

�
�
��

�
��
�
	

�

	
��
�
�
�

�
�
�
�
��
�

�������� ������ �����

(d) Synthesized Applications

Figure 7. Experimental results: (a) � (c) real-world applications, and (d) synthesized applications.

algorithm is motivated by the observation that the current DVS
algorithms estimate the slack times too conservatively. The
main contribution of the proposed algorithm is that the slack
times can be estimated more efficiently with a small additional
overhead, achieving much higher energy efficiency over the
existing DVS algorithm. Experimental results show that our
algorithm reduces the energy consumption up to 40% over the
existing algorithm.

The proposed lp/SEH algorithm described in this paper
can be extended in several directions. For example, as sug-
gested in the previous section, a more intelligent slack dis-
tribution method can be used to further improve the energy
efficiency of the lp/SEH algorithm. We are currently in-
vestigating a profile-based slack distribution method for the
lp/SEH algorithm. We also plan to apply the proposed slack
estimated method to other scheduling policies such as fixed-
priority scheduling policies.

References

[1] H. Chetto and M. Chetto. Some Results of the Earliest Dead-
line Scheduling Algorithm. IEEE Transactions on Software
Engineering, 15(10):1261–1269, October 1989.

[2] F. Gruian. Hard Real-Time Scheduling Using Stochastic Data
and DVS Processors. In Proceedings of the International Sym-
posium on Low Power Electronics and Design, pages 46–51,
August 2001.

[3] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis
Techniques for Low-Power Hard Real-Time Systems on Vari-
able Voltage Processor. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 178–187, December 1998.

[4] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin.
Visual Assesment of a Real-Time System Design: a Case Study
on a CNC controller. In Proceedings of IEEE Real-Time Sys-
tems Symposium, pages 300–310, December 1996.

[5] C. M. Krishna and Y.-H. Lee. Voltage-Clock Scaling Adaptive
Scheduling Techniques for Low Power in Hard Real-Time Sys-
tems. In Proceedings of the Sixth IEEE Real-Time Technology
and Applications Symposium, pages 156–165, June 2000.

[6] S. Lee and T. Sakurai. Run-time Voltage Hopping for Low-
power Real-Time Systems. In Proceedings of the 37th Design
Automation Conference, pages 806–809, June 2000.

[7] Y.-H. Lee and C. M. Krishna. Voltage-Clock Scaling for Low
Energy Consumption in Real-time Embedded Systems. In Pro-
ceedings of the Real-Time Computing Systems and Applica-
tions, pages 272–279, December 1999.

[8] C. Locke, D. Vogel, and T. Mesler. Building a Predictable
Avionics Platform in Ada: a Case Study. In Proceedings of
IEEE Real-Time Systems Symposium, pages 181–189, Decem-
ber 1991.

[9] G. Quan and X. S. Hu. Energy Efficient Fixed-Priority
Scheduling for Real-Time Systems on Variable Voltage Pro-
cessors. In Proceedings of the Design Automation Conference,
pages 828–833, June 2001.

[10] I. Ripoll, A. Crespo, and A. G. Fornes. An Optimal Algorithm
for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Pre-
emptive Systems. IEEE Transactions on Software Engineering,
23(6):388–400, 1997.

[11] T. Sakurai and A. Newton. Alpha-power Law MOSFET Model
and Its Application to CMOS Inverter Dealy and Other For-
mulars. IEEE Journal of Solid State Circuits, 25(2):584–594,
1990.

[12] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for
Low-Energy Hard Real-Time Applications. IEEE Design and
Test of Computers, 18(2):20–30, March 2001.

[13] Y. Shin and K. Choi. Power conscious fixed priority schedul-
ing for hard real-time systems. In Proceedings of the Design
Automation Conference, pages 134–139, June 1999.

[14] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed Processors.
In Proceedings of the International Conference on Computer-
Aided Design, pages 365–368, November 2000.

[15] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in Dy-
namic Priority Systems. Real-Time Systems, 10(2):179–210,
March 1996.

[16] F. Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proceedings of the IEEE Foundations
of Computer Science, pages 374–382, 1995.

