
Performance Analysis of On-Chip Cache and Main Memory
Compression Systems for High-End Parallel Computers

Keun Soo Yim, Jihong Kim, and Kern Koh
School of Computer Science and Engineering

Seoul National University
Seoul 151-742, Korea

{ksyim, kernkoh}@oslab.snu.ac.kr, jihong@davinci.snu.ac.kr

ABSTRACT

Cache and memory compression systems have been developed for
improving memory system performance of high-performance
parallel computers. Cache compression systems can reduce on-
chip cache miss rate and off-chip memory traffic by storing and
transferring cache lines in compressed form, while memory
compression systems can expand main memory capacity by
storing memory pages in compressed form. However, these
systems have not been quantitatively evaluated on an identical
condition, making it difficult to understand the performance of a
new system relative to the existing systems. In this paper, we
provide an identical execution-driven simulation environment for
these systems. To the best of our knowledge, none has been
evaluated the performance of cache and memory compression
systems by using an execution-driven simulator. Experimental
results show that cache compression systems reduce cache miss
rate by 16% and memory traffic by 30%, while it expands memory
capacity by less than 160%. The results also show that memory
compression systems significantly expand memory capacity by
over 270%. Based on these experimental analyses, we finally
provide future research directions on the compression systems.

Keywords

Performance evaluation, memory hierarchy, cache and memory
compression, processor-memory performance gap, I/O bottleneck

1. INTRODUCTION
The performance of a computer system depends mostly on the
well-organized memory architectures because the memory system
is frequently accessed by the processors. Computer architects
usually construct a memory hierarchy where a higher layer has the
smaller capacity than the lower layers but it is more quickly
accessible. As this memory hierarchy exploits temporal and spatial
localities [1], the hierarchical memory systems can afford
relatively good performance in a cost-efficient manner.
Unfortunately, throughout over past two decades, the performance
gaps between adjacent memory layers have notably increased by
every year. For instance, the processor-memory performance gap
has increased by 28-48% every year, and the hard disk speed is
still five to six orders of magnitude slower than the memory speed
[1]. We typically call these gaps as the memory wall and the I/O
bottleneck, respectively. These performance gaps can seriously
degrade the memory system performance, especially in high-end
computers which use a large size of memory workload.

In order to alleviate these performance gaps, modern computer
systems are typically based on a large on-chip cache capacity, a
wide memory bandwidth, and a large main memory capacity.
However, these expansion approaches have physical limitations
such as limited on-chip area and narrow off-chip pin bandwidth.
Alternatively, cache and memory compression technologies can
logically expand cache capacity, memory bandwidth, and memory
capacity by managing data in compressed form. As these are kind
of quantitative approaches, they are orthogonal to the existing
intelligent cache and memory organizations. Specifically, cache
compression systems can alleviate the ever-increasing processor-
memory performance gap by expanding effective cache capacity
and memory bandwidth [11-15], while memory compression
systems can address the I/O bottleneck by expanding main
memory capacity [16-23]. However, these systems have not been
quantitatively evaluated on an identical condition which is making
it difficult to understand the performance of a new system
objectively relative to the existing systems.
In this paper, we briefly summarize the overall organization and
main contribution of the existing cache and memory compression
systems. We then provide an accurate execution-driven simulation
environment for the uniform evaluation of these systems. To the
best of our knowledge, none has been evaluated and published the
performance of cache and memory compression systems by using
an execution-driven simulation method. The experimental results
show that cache compression systems reduce cache miss rate by
16% and memory traffic by 30%, while it expand memory
capacity by less than 160%. The results also show that memory
compression systems significantly expand memory capacity by
over 270%. Based on these experimental analyses, we finally
provide future research directions on the compression systems.
The following is a synopsis of this paper. Section 2 describes the
existing memory compression algorithms with their hardware
organizations. In Section 3 and 4, we briefly review the existing
cache and memory compression systems, respectively. We then
describe our execution-driven simulation environment in Section 5,
while the evaluation results are given in Section 6. In Section 7,
we finally conclude this paper with summary and future research
directions.

2. COMPRESSION ALGORITHMS
Essentially memory compression algorithms have to satisfy the
following four conditions. First, they must be a lossless algorithm.
Second, they have to provide high compression efficiency even
though the source data size is small, i.e. less than 4 kilobytes.

Third, they have to (de)compress memory data as fast as possible
so as to logically hide the (de)compression overhead in terms of
memory access time. Fourth, their hardware organization has to be
simple so that they can be used in a practical memory hierarchy.
Dynamic compression algorithms, e.g. Ziv-Lempel (LZ) [2], can
satisfy these conditions. These algorithms adaptively organize a
mapping dictionary in which the preceding source data is stored
based on LRU stack model [10]. Specifically, if the current byte is
found in the dictionary, it is a full hit and is encoded with ‘0’ bit
and the match location in the dictionary. Then the matched byte in
the dictionary is moved to the top of the dictionary. Otherwise
when it is missed in the dictionary, the current byte is encoded
with a prefix ‘1’ bit. Behind this, the current byte is inserted into
the dictionary as a top entry.
In order to further improve the performance of the dynamic
algorithms for memory data, several memory compression
algorithms, e.g. X-Match [3] and WK [5], have been developed.
Both X-Match and WK process memory data in a unit of four
bytes, namely word, because the I/O unit size of memory data is
either two or four bytes. As the word size is relatively large, these
algorithms additionally use a partial hit where the current word
partly matches to a word in dictionary. For example, in X-RL,
when more than or equal to two bytes of the current word matches
a word in the dictionary, it is a partial hit and is encoded with ‘0’
bit, the match location in the dictionary, the match type (means the
pattern of matched bytes), and the unmatched literal characters.
Similarly, WK algorithm generates a partial hit when low order
bits include the least significant bit of the current word match to
that of a word in the dictionary. In reverse manner, both X-Match
and WK decompress the compressed data.
Rizzo [4] observed that a large fraction of memory data consists of
consequent null bytes where the values are zero. To effectively
handle the consequent null bytes, X-Match is further mixed with
the run-length encoding for null bytes. We call the extended
algorithm X-RL (X-Match and Run-Length).
Moreover, it has been reported that values produced by executing
instructions exhibit a high degree of value locality [8] and frequent
value locality [9]. That is multiple executions of the same
instruction often produce the same value. Based on these
observations, the frequent value compression technique has been
developed which encodes a small number of values that appear
frequently during memory accesses while providing the ability to
randomly access individual data words in compressed data.
Figure 1 shows the compression rate of these algorithms with code
and data memory images of SPEC CPU2000 benchmark [27]. The
compression rate means the ratio of the compressed data size and
the source data size. It shows that a larger source data size results
in the better compression rate, and the rate is generally stabilized
when the source data size is larger than or equal to two kilobytes.
It also shows that these algorithms provide good compression rate
of about 30% for data memory images although the source data
size is relatively small of about 256 bytes.
In order to use X-RL in practical memory hierarchy, hardware
prototype of X-RL has been developed using FPGA. The X-RL
hardware is organized by four pipeline stages with four bytes data
bandwidth. It means that after consuming initial three clock cycles,
it (de)compresses four bytes in every cycle and decompresses any
sequential null bytes in one cycle. Thus, the speed of X-RL
hardware is typically as fast as the speed of memory and I/O buses.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

C
o
d
e

D
a
ta

C
o
d
e

D
a
ta

C
o
d
e

D
a
ta

C
o
d
e

D
a
ta

C
o
d
e

D
a
ta

C
o
d
e

D
a
ta

C
o
d
e

D
a
ta

64B 128B 256B 512B 1KB 2KB 4KB
Source Data Size and Benchmark Image Type

C
o
m

p
re

s
s
io

n
 R

a
te

LZ(RW1) WK(4x4) X-Match X-RL

Figure 1. Compression rate of memory compression algorithms.

Unfortunately, if X-RL hardware is used for compressing on-chip
cache lines, its decompression time can seriously delay the access
time of on-chip caches. Because the (de)compression time of X-
RL hardware is directly proportional with the source data size, we
can reduce the decompression time by using a small source data
size. However, a smaller source data size at the same time results
in the lower compression efficiency.
In order to overcome this technical obstacle, Franaszek et al. [7]
have developed an associative parallel (de)compressor that slightly
lowers the compression efficiency, while it significantly reduces
the (de)compression time depending on the parallelism degree of
four. These parallel (de)compressors are practically used for main
memory compression systems.

3. CACHE COMPRESSION SYSTEMS
On-chip cache compression systems have been developed so as to
alleviate the ever-increasing processor-memory performance gap.
These systems are able to reduce the on-chip cache miss rate and
off-chip memory traffic by storing and transferring cache lines in
compressed form. As compared with the conventional expansion
method, which uses a large on-chip cache size and a high off-chip
bus bandwidth, these on-chip cache compression systems are an
alternative solution that does not have to face physical limits, such
as bounded on-chip area and limited off-chip pin bandwidth.
The existing on-chip cache compression systems have been
developed on different on-chip cache hierarchies of first-level and
second-level caches as described follows.
Lee et al. [11] have presented the Selectively Compressed Memory
System (SCMS) where both on-chip second-level cache and main
memory are managed in compressed form. Figure 2(a) shows the
overall organization of the SCMS. It shows that the SCMS has two
main performance benefits of expanding both the second-level
cache capacity and the memory bus bandwidth. In the SCMS, if a
compressed cache line is accessed, the cache line has to be all
decompressed on the fly from the first word before transferring the
requested word to processors. Thus, the decompression time can
diminish the benefits obtained from data compression technology
although a fast hardware decompressor of X-RL is used.
In order to lessen the decompression overhead, Lee et al. used the
selective compression technique which means cache lines are
managed in compressed form only if the lines are sufficiently
compressed. They also used a decompression buffer as a small
intermediate cache between first-level and second-level caches.

L1 Inst. Cache
(Uncompressed)

L1 Data Cache
(Uncompressed)

Decompression
Buffer (DB)

Unified L2 Cache
(Compressed)

Main Memory
(Compressed)

(De)compression

B
us

 Hard Disks
 (Uncompressed)

Buffer Cache (Compressed)

Swap Area
(Compressed)

Page SwappingI/O

Main Memory (Uncompressed)

(a) SCMS (b) CBC

Figure 2. Overall organization of the SCMS and CBC.

The decompression buffer can be concurrently accessed with the
first-level data cache in the same way as the victim cache does [13].
As the line size of decompression buffer is identical to the second-
level cache line size, it has a prefectching effect to first-level data
cache. In addition, a fixed-size allocation method [10] is used for
efficient management of variable-sized compressed cache lines.
It has been shown that the SCMS can reduce the average memory
access time of SPEC benchmark suite by up to 20% as compared
with conventional memory systems. Since the SCMS has mainly
focused on alleviating the processor-memory performance gap, it
is not effective for expanding the main memory capacity although
the main memory is managed in compressed form.
Later, an on-chip first-level cache compression system, namely the
Compression Cache (CC) [12], has been proposed aiming for
embedded micro-processors. The CC uses the frequent value
compression method [9] that provides the ability to randomly
access individual data words in a compressed cache line. Because
of this, the CC does not suffer from the decompression overhead
even though it is used for on-chip first-level cache.
However, since various programs have different frequent value
localities, and even in a same program the frequent value locality
can be changed as a function of the execution path which depends
on the runtime environment such as input data. Thus, we need to
efficiently handle these dynamics so as to practically use the CC.
Moreover, we believe that the performance impact of the CC
would not be great if it is employed in out-of-order processors
with a multi-level cache hierarchy because this kind of high-
performance processors can hide the short latencies caused by
first-level cache misses that hit in the second-level cache.
It has been recently studied that hardware-based data compression
technology is able to be effectively used for reducing the energy
consumption of on-chip caches [14, 15]. By storing less frequently
used cache lines in compressed form and turning off significantly
part of on-chip cache area, the compressed caches can reduce the
energy consumption while incurring only a small degradation in
the cache access time.

4. MEMORY COMPRESSION SYSTEMS
Main memory compression systems can reduce the I/O bottleneck,
i.e. page swapping operations [10], by logically expanding the
main memory capacity. This section describes the existing main
memory compression systems which are based on either software-
and hardware-based data compression methods.

4.1 Software-based compression approach
Wilson [16] firstly proposed a memory compression system as a
buffer cache of operating systems so as to reduce page swapping
operations. Figure 2(b) shows the overall organization of the
compressed buffer cache (CBC). When a page swapping operation
is required due to the leak of available main memory capacity, the
CBC compresses least recently used pages and keeps them in the
main memory instead of swapping them out to hard disks. Later, if
a page stored in the CBC is accessed, the page is decompressed
before being transferred to processors. As the decompression time
is usually shorter than the time for page swap-in operation, the
CBC can alleviate long I/O latency caused by accessing hard disks.
Douglis [17] has practically implemented the CBC in Sprite OS.
He observed speedups for some benchmark programs and
slowdowns for others. Then, he concluded that the effectiveness of
the CBC depends mostly on program behavior and relative costs
of (de)compression and hard disk I/O.
Kaplan et al. [5, 18] have presented an adaptive method of
controlling the CBC size by reflecting program behavior so as to
accomplish consistent performance improvements with various
programs. Specifically, the adaptive method retains some recency
information for recently evicted pages to perform an on-line cost-
benefit analysis. Figure 3 shows an example where the memory
size can be larger to 150% of its original size by compressing
some memory pages. Here, the cost means the time for performing
(de)compression for memory pages that will be retained in the
CBC when the cache size is enlarged or decreased to a specific
value, while the benefit means the reduced time for page swapping
operations due to the reduced buffer cache miss rate by enlarging
or decreasing the compressed cache size. If this analysis predicts
performance improvement, the adaptive method reconfigures the
CBC size dynamically.
Both the static and adaptive CBCs have been implemented on
Linux [19, 20]. These studies have shown that the CBCs are a
practical method of alleviating the long I/O latencies by reducing
page swapping operations. However, there still exist several
research topics. One is supporting multi-processor systems as the
CBS is more useful for high-performance multi-processor systems.
The other is improving the cost-benefit analysis because it may
degrade the memory system performance especially when several
memory consuming applications are running concurrently.

Benefit

642 Memory
Size

C
os

t

1
3

2 1 2
4

5 6

Page
Faults

3 4

Uncomp. Page

Comp. Page

?

?

Figure 3. An example of cost-benefit analysis.

4.2 Hardware-based compression approach
In order to reduce (de)compression cost, hardware-based
memory compression systems have been developed. Kjelso et al.
[21] have proposed the Compressed Memory System (CMS), which
divides main memory into two exclusive parts, uncompressed and
compressed. As shown in Figure 4(a), a compressed memory
management unit (CMMU) adaptively manages the compressed
memory size in order to provide good performance. If there is a
competition for memory resources, the CMMU enlarges the
compressed memory size and store less frequently accessed pages
in compressed form. If physical memory size is larger than system
workload size, the CMMU does not manage memory pages in
compressed form as it can delay the memory access time due to
decompression. Although a hardware decompressor of X-Match is
used for the CMS, decompression overhead is not completely
hided as the compressed memory page has to be decompressed
from the first word to access the requested cache line.
In general, most applications run 50-20 times slower if half of the
required memory size is available [24]. As the CMS can expand
main memory capacity significantly, it reduces the execution time
of applications by an order of magnitude under heavy memory
pressure conditions.
IBM researchers have also developed a hardware-based memory
compression system, namely the Memory Expansion Technology
(MXT) [22, 23]. Figure 4(b) is the overall memory hierarchy
organization of the MXT. The MXT uses an off-chip third-level
cache as a decompression buffer of the compressed main memory.
The off-chip cache and the compressed main memory satisfy the
inclusion property in which all data stored in the off-chip cache is
a subset of the data stored in the compressed main memory. In
practice, the off-chip cache is made of double data rate SDRAM
because the MXT is mainly used for multi-processor systems that
require a high memory bandwidth. Also the MXT uses a
cooperative parallel (de)compressor [7] to reduce decompression
time, while slightly lowering the compression efficiency.
The MXT typically expands the memory size by more than twice
of its original physical memory size. Because of this, in the MXT,
operating systems use a real address space, which is twice larger
than physical address space, and a memory controller performs
address translation from real to physical address space. The real to
physical address translation table is located in a certain part of
physical memory. If memory pages are not sufficiently
compressed to half of their original size, the memory controller
generates an interrupt to the operating system so that it can handle
this situation by performing page swap-out operations.
As the MXT expands the main memory capacity notably, it can
improve the execution time of applications by a factor of two as
compared with conventional memory systems.

CPUs

Uncompressed
Memory

CMMU

Compressed
Memory

(De)compression

I/O Devices

CPUs

Compressed
Memory

I/O DevicesL3 Cache

(De)compression

 (a) CMS (b) MXT

Figure 4. Overview of the CMS and the MXT.

In addition, we believe that in spite of the cost of memory devices
has decreased by every year, memory compression systems are
still interesting research topic because a system with both larger
memory and a memory compression technology is obviously
provide better performance than one with only larger memory.

5. EVALUATION METHODOLOGIES
In on-chip cache and main memory compression systems, the size
of both compressed cache lines and memory pages is liable to
change after performing a write operation. As a result, the access
time of the compressed cache and memory is not fixed but it
depends on runtime status. However, it is difficult to reflect this
kind of runtime behaviors in trace-driven simulations due to their
use of static trace data. Moreover, trace-driven simulations usually
do not provide essential operations of superscalar microprocessors
such as out-of-order execution, which is used to adaptively cope
with this variable memory access time.
Unfortunately, all of the existing cache and memory compression
systems have been evaluated by using trace-driven simulations.
Thus, we implemented an execution-driven simulator based on
SimpleScalar 3.0 [25]. We mainly modified the cache, memory
bus, and virtual memory modules of the simulator and newly
supplied the compression and decompression modules.
Specifically, we used Alpha instruction set architecture, which
accurately reflects the high-performance processor architecture.
We used sim-safe to capture virtual memory images and sim-
outorder to quantitatively evaluate the performance of cache and
memory systems. The base line model follows an aggressive 8-
issue out-of-order processor. The cache configuration parameters
for the base line model are assumed to be two 32 kilobytes first-
level caches and a unified 256 kilobytes second-level cache with
various associativity degrees and line sizes. We referenced an
accurate cache timing model of CACTI for calculating the access
time of on-chip caches [26].
We used the SPEC CINT2000 benchmark suite [27] with
reference input workload. The benchmark suite is compiled by
using the Compaq Alpha compiler with SPEC peak settings. The
virtual memory image of this benchmark suite is captured after full
execution. For the sim-outorder simulations, we used a fast
forwarding technique [28] where 1.5 billion instructions are
accurately executed after a coarse-grain simulation of 0.5 billion
instructions so as to reduce the simulation time without notably
compromising the simulation accuracy.

6. PERFORMANCE EVALUTIONS
In this section, we provide both the average memory access time
of the cache compression systems and the main memory capacity
expansion rate of the cache and memory compression systems.

6.1 Processor-memory performance gap
reduction
First, we evaluated the average memory access time of the existing
cache compression systems. The compressed on-chip cache
systems, such as the SCMS, are able to reduce the on-chip cache
miss rate by increasing the effective cache capacity, and also
expand the memory bandwidth by transferring data in compressed
form. Because these features mean that the processor-memory
performance gap can be alleviated, the compressed on-chip cache
systems can consequently reduce the average memory access time.

Conversely, since most the efficient compression algorithms do
not have the ability of randomly accessing a particular byte in
compressed data, the decompression time can cause the side-effect
not only in the compressed on-chip cache system but also in the
main memory compression systems.
We quantitatively analyzed these performance factors of the
SCMS using a cycle simulator with popular benchmark suite in an
accurate manner. We also compared the performance of the SCMS
to that of a conventional memory system (CS), and a conventional
memory system with a decompression buffer (CSDB).
Figure 5 illustrates the amount of memory traffics. It shows that
the SCMS reduce the code and data memory traffics by 30% in an
average case as compared with conventional memory systems.
The amount of memory traffic reduction depends heavily on the
compression efficiency of the benchmark program workloads. For
example, the SCMS reduces the traffic by 42%, 48%, 33%, 44%,
41%, 48%, and 44% for vpr, gcc, mcf, crafty, parser, vortex, and
twolf, as their average compression rate of data memory workload
is 23%, 28%, 17%, 5%, 28%, 24%, and 28%, respectively.
Then, we analyzed the second-level cache miss rate. Figure 6
shows that normalized cache miss count of a unified second-level
cache depending on the benchmark programs and system types. It
shows that in CSDB the second-level cache miss rate is slightly
increased as compared with the convention system because its
decompression buffer filters some second-level cache accesses, so
that its second-level cache can not update the recency information
of the corresponding cache lines. This can incur some inefficient
replacements regardless of the replacement policy.
We also observed that the second-level cache miss rate of the
SCMS is reduced by about 16% in an average case as compared
with the conventional memory systems. Specifically, the SCMS
reduces the cache miss rate by up to 37% as compared with
conventional system. The normalized second-level cache miss rate
of the SCMS is slightly increased for benchmark gzip as compared
with the conventional systems. However, as its first-level data
cache miss rate is only 1-3%, and its second-level cache misses are
increased by less than 1%, this does not seriously degrade the
memory access time of the SCMS. On the other, as the SCMS
reduces the memory traffic of this benchmark program, the SCMS
can even improve the memory access time for this program.
Then, we analyzed the average memory access time of CS, CSDB,
and the SCMS for code and data memories as shown in Figure 7
and 8, respectively. The access time for code memory is measured
by using the conventional memory access time equation [1], and
that for data memory is calculated by using equation 1. Here, A, M,
C, and DO means the access time, the miss rate, the fraction of
compressed lines, and the decompression time, respectively, while
the small symbols of L1, DB, L2, and M mean the first-level cache,
decompression buffer, second-level cache, and main memory,
respectively. The results show that the SCMS reduces the average
data memory access time by 25% and 8% as compared with CS
and CSDB, respectively, in an average case. Likewise, the SCMS
slightly reduces the average code memory access time by less than
1% in an average case, as compared with CS and CSDB.
Finally, Figure 9 provides the instructions per cycle (IPC) of CS,
CSDB, and the SCMS. This figure shows that the execution time
of the SCMS is reduced by up to 67% for benchmark mcf. In an
average case, the SCMS reduces the execution time by about 14%
and 9% as compared with CS and CSDB. In addition, as the

SCMS significantly expands the effective memory capacity, we
presume that the real reduction in the execution cycles obtained
with the proposed memory hierarchy will be much greater that we
presented in Figure 9.
















+

+
+

+
+

=

avgMDOMCLMDBMLM
MALMDBMLM

avgLDOLCDBMLM
LADBMLM

DBALM
LA

AMAT

;21
21

;221
21

1
1

 (1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

gzip vpr gcc mcf craftyparser eonperlbmk gap vortexbzip twolf AVG

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 T
ra

ff
ic

 R
a
te

Code Latency Code Bandwidth Data-Read Latency

Data-Read Bandwidth Data-Write Latency Data-Write Bandwidth

Figure 5. Memory traffics. (A: CS; B: CSDB; C: SCMS)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

gz
ip vp

r
gc

c
m
cf

cr
af
ty

pa
rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip
2

tw
ol
f

AV
G

N
o
rm

a
liz

e
d
 C

a
c
h
e
 M

is
s
e
s

CS CSDB SCMS

Figure 6. Normalized second-level cache misses.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

gzip vpr gcc mcf craftyparser eonperlbmkgap vortex bzip2 twolf AVG

T
im

e
 (

C
P
U

 c
yc

le
)

L1_AT L2_AT M_AT M_TT

Figure 7. Average code memory access time.

* L1: first-level cache; L2: second-level cache; M: main memory;
AT: access time; TT: transfer time. * A: CS; B: CSDB; C: SCMS.

0

1

2

3

4

5

6

7

8

9

10

11

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf AVG

T
im

e
 (

C
P
U

 c
yc

le
)

L1_AT DB_AT L2_AT L2_DO M_AT M_TT M_DO

Figure 8. Average data memory access time.

* L1: first-level cache; DB: decompression buffer; L2: second-
level cache; M: main memory; AT: access time; DO:
decompression overhead; TT: transfer time. * A: CS; B: CSDB; C:
SCMS.

0

0.5

1

1.5

2

2.5

3

gz
ip vp

r
gc

c
m
cf

cr
af
ty

pa
rs
er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip
2

tw
ol
f

AV
G

In
s
tr
u
c
ti
o
n
s
 P

e
r
C

yc
le

 (
IP

C
)

CS CSDB SCMS

Figure 9. Instructions per cycle (IPC).

6.2 Main memory capacity expansion
In order to measure the expansion rate of main memory capacity,
we use the effective compression rate (ECR) as the performance
metric, which represents the number of used physical pages over
the number of provided logical pages. To precisely compare this
metric, we define two additional metrics, namely the compression
rate and the internal fragmentation rate. The compression rate
(CR) is already defined in Section 2 where a lower compression
rate means the better efficiency. The internal fragmentation rate
(IFR) is defined as the ratio of the internal fragmentation size to
the source block size. Then, the effective compression rate is
obtained by adding the average compression rate and the average
internal fragmentation rate. We finally define the expansion rate
(ER) as the reciprocal of the effective compression rate.
We analyzed the memory expansion rate of the existing cache and
memory compression systems of optimal, the CBC, the CMS, the
MXT, and the SCMS with the memory images of SPEC CPU2000
benchmark suite. Table 1 summarizes the evaluation results. The
optimal system expands the size of data and code memories by
480% and 160%, respectively. The memory compression systems,
such as the CBC, the CMS, and the MXT, can expand the code
and data memory sizes by 210-300% and 110-140%, respectively,
while the compressed on-chip cache system of the SCMS can only
expand the data memory capacity by 150-160%.

Table 1. Main memory capacity expansion rate.

Data Area Code Area
System Comp.

Algorithm

Comp.
Unit
Size

Memory
Allocation
Unit Size ER CR IFR ER CR IFR

Optimal X-RL
LZ 4KB - 480

340
21
29

0
0

160
140

64
71

0
0

CBC LZ
WK 4KB 512B 270

300
29
26

9
6

130
110

71
86

6
6

CMS X-Match 4KB 512B
1KB

230
210

37
37

6
11

140
130

65
65

6
10

MXT LZ 1KB 256B 240 31 11 110 79 12

SCMS X-RL
64B
128B
256B

2KB
150
160
160

23
22
21

42
41
40

100
100
100

80
75
71

20
25
29

* ER: Expansion Rate (%); CR: Compression Rate (%); IFR: Internal
Fragmentation Rate (%).

Figure 10. Compression Rate Distribution of Cache Lines.

In the SCMS, the high internal fragmentation rates degrade the
memory expansion performance significantly. In Figure 10, we
briefly visualize this internal fragmentation problem. The graph
means a compression rate distribution of on-chip cache lines on a
SimpleScalar/Alpha machine. Although the average compression
rate is about 55%, the size of compressed cache lines is varying
depending on their compression efficiency. Because of this, the
coarse-grained compressed cache line management of the SCMS
[11] incurs a large amount of internal fragmentation spaces. For
example, when the compression rate is less than 50%, the internal
fragmentation space is getting increased as the compression rate is
being smaller. Moreover, the internal fragmentation space
completely degrades the effectiveness of data compression when
the compression rate is higher than 50%. Therefore, the internal
fragmentation problem seriously diminishes the benefit obtained
from data compression technology in the SCMS.
Table 2 summarizes the performance characteristics of the existing
on-chip cache and main memory compression systems. In the table,
the decompression layer means the memory layer in which the
compressed data are decompressed, and the compressed modules
specify the memory modules managed in compressed form. It
shows that none of the existing cache and memory compression
systems simultaneously accomplishes the two main design goals
of alleviating the memory wall and the I/O bottleneck. Therefore,
it will be interesting to develop a cache and memory compression
system that simultaneously achieves these two design goals.

Table 2. Performance summary.
Compressed Modules System Decomp.

Layer Cache Bus Memory
Comp.

Algorithm
CC

[9, 12] CPU L1 Data D/C Hardware
(Freq. Value)

SCMS
[11] L1 L2 Data Aggressive

Low
Hardware
(X-RL)

MXT
[22, 23] L3 N/A N/A Aggressive

High
Hardware

(Parallel LZ)
CMS

[3, 21] Memory N/A N/A Passive
High

Hardware
(X-Match)

CBC-Static
[17, 19] Memory N/A N/A Passive

High
Software

(LZ)
CBC-Adapt.

[18, 20] Memory N/A N/A Passive
High

Software
(LZ Ext.)

* D/C: Do not consider, N/A: Not available.

7. CONCLUSIONS
As the amount of memory space required by applications has
grown by 50-100% every year, modern computer architects have
developed the main memory compression technologies for
improving the performance but reducing the cost. Recently, on-
chip cache compression systems were presented to alleviate the
processor-memory performance gap by reducing the cache miss
rate and expanding memory bandwidth. In this paper, we have
quantitatively evaluated the performance of these systems through
accurate execution-driven simulation studies. The experimental
results have shown that none of existing cache and memory
compression systems sufficiently expands the main memory
capacity, while alleviating the processor-memory performance gap.
Therefore, we consider that any future works that simultaneously
alleviate the processor-memory performance and I/O bottleneck
will be interesting especially in the context of high-end computing.

8. REFERENCES
[1] J. L. Hennessy, D. A. Patterson, and D. Goldberg, Computer

Architecture – A Quantitative Approach, 3rd Ed., Morgan Kaufmann
Publishers, 2002.

[2] D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM
Computing Surveys, Vol. 19, No. 3, pp. 261-296, 1987.

[3] M. Kjelso, M. Gooch, and S. Jones, “Design and Performance of a
Main Memory Hardware Data Compressor,” In Proceedings of the
22nd Euromicro Conference, pp. 422-430, 1996.

[4] L. Rizzo, “A Very Fast Algorithm for RAM Compression,” ACM
Operating Systems Review, Vol. 31, No. 2, pp. 36-45, 1997.

[5] S. F. Kaplan, Compressed Caching and Modern Virtual Memory
Simulation, Ph.D. Thesis, University of Texas at Austin, 1999

[6] J. L. Nunez and S. Jones, “Loseless Data Compression Programmable
Hardware for High-Speed Data Networks,” In Proceedings of IEEE
International Conference on Field-Programmable Technology, pp.
290-293, 2002.

[7] P. A. Franaszek, J. Robinson, and J. Thomas, “Parallel Compression
with Cooperative Dictionary Construction,” In Proceedings of the 6th
IEEE Data Compression Conference, pp. 200-209, 1996.

[8] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and
Load Value Prediction,” In Proceedings of the 5th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, 1996.

[9] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and
Value-centric Data Cache Design,” In Proceedings of the 9th ACM

International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[10] M. Maekawa, A. E. Oldehoeft, and R. R. Oldehoeft, Advanced
Concepts in Operating Systems, McGraw-Hill
Science/Engineering/Math, 1994.

[11] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and Evaluation of
On-Chip Cache Compression Technology,” In Proceedings of the
17th IEEE International Conference on Computer Design, pp. 184-
191, 1999.

[12] J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in
Data Caches,” In Proceedings of the 33rd ACM/IEEE International
Symposium on Microarchitecture, pp. 258-265, 2000.

[13] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully Associative Cache and Prefetch Buffers,”
In Proceedings of the 17th ACM/IEEE Annual International
Symposium on Computer Architecture, pp. 364-373, 1990.

[14] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-Assisted
Data Compression for Energy Minimization in Systems with
Embedded Processors,” In Processing of the IEEE Design,
Automation and Test in Europe Conference and Exhibition, pp. 449-
453, 2002.

[15] J. Abella and A. Gonzalez, “Power Efficient Data Cache Designs,” In
Processing of the IEEE International Conference on Computer
Design, pp. 8-13, 2003.

[16] P. R. Wilson, “Operating System for Small Objects,” In Proceedings
of the International Workshop on Object Orientation in Operating
Systems, pages 80-86, 1991.

[17] F. Douglis, “The Compression Cache: Using On-line Compression to
Extend Physical Memory,” In Proceedings of the 1993 USENIX
Winter Technical Conference, pp. 519-529, 1993.

[18] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for
Compressed Caching in Virtual Memory Systems,” In Proceedings of
the 1999 USENIX Summer Technical Conference, pp. 101-117, 1999.

[19] R. Cervera, T. Cortes, and Y. Becerra, Improving Application
Performance through Swap Compression,” In USENIX’99 – Freenix
Refereed Track, 1999.

[20] R. S. Castro, A. P. Lago, and D. D. Silva, “Adaptive Compressed
Caching: Design and Implementation,” In Proceedings of the 15th
Symposium on Computer Architecture and High Performance
Computing, 2003.

[21] M. Kjelso, M. Gooch, and S. Jones, “Performance Evaluation of
Computer Architecture with Main Memory Data Compression,”
Journal of Systems Architecture, Vol. 45, pp. 571-590, 1999.

[22] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. E. Wazlowski, P. M. Bland, “IBM Memory Expansion
Technology (MXT),” IBM Journal of Research and Development,
Vol. 45, No. 2, 2001.

[23] B. Abali, S. Xiaowei, H. Franke, D. E. Poff, and T. B. Smith,
“Hardware Compressed Main Memory: Operating System Support
and Performance Evaluation,” IEEE Transactions on Computers, Vol.
50, Issue 11, pp. 1219-1233, 2001.

[24] H. Garcia-Molina, A. Park, and L. R. Rogers, “Performance Though
Memory,” In Proceedings of the 1987 ACM SIGMETRICS
Conference, pp. 122-131, 1987.

[25] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an Infrastructure
for Computer System Modeling,” IEEE Computer, Vol. 35, Issue 2,
pp. 59-67, 2002.

[26] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,” Compaq Computer Corporation,
Western Research Laboratory, Research Report 2001/2, 2001.

[27] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium,” IEEE Computer, Vol. 33, Issue 7, pp. 28-35, 2000.

[28] I. Gomez, L. Pifiuel, M. Prieto, and F. Tirado, “Analysis of
Simulation-adapted Benchmarks SPEC 2000,” ACM Computer
Architecture News, Vol. 30 , No. 4, pp. 4-10, 2002.

